Discovering Expert-Level Air Combat Knowledge via Deep Excitatory-Inhibitory Factorized Reinforcement Learning

计算机科学 强化学习 抑制性突触后电位 人工智能 兴奋性突触后电位 机器学习 神经科学 生物
作者
Haiyin Piao,Shengqi Yang,Hechang Chen,Junnan Li,Jin Yu,Xuanqi Peng,Xin Yang,Zhen Yang,Zhixiao Sun,Yi Chang
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
卷期号:15 (4): 1-28 被引量:3
标识
DOI:10.1145/3653979
摘要

Artificial Intelligence (AI) has achieved a wide range of successes in autonomous air combat decision-making recently. Previous research demonstrated that AI-enabled air combat approaches could even acquire beyond human-level capabilities. However, there remains a lack of evidence regarding two major difficulties. First, the existing methods with fixed decision intervals are mostly devoted to solving what to act but merely pay attention to when to act, which occasionally misses optimal decision opportunities. Second, the method of an expert-crafted finite maneuver library leads to a lack of tactics diversity, which is vulnerable to an opponent equipped with new tactics. In view of this, we propose a novel Deep Reinforcement Learning (DRL) and prior knowledge hybrid autonomous air combat tactics discovering algorithm, namely deep E xcitatory-i N hibitory f ACT or I zed maneu VE r ( ENACTIVE ) learning. The algorithm consists of two key modules, i.e., ENHANCE and FACTIVE. Specifically, ENHANCE learns to adjust the air combat decision-making intervals and appropriately seize key opportunities. FACTIVE factorizes maneuvers and then jointly optimizes them with significant tactics diversity increments. Extensive experimental results reveal that the proposed method outperforms state-of-the-art algorithms with a 62% winning rate and further obtains a margin of a 2.85-fold increase in terms of global tactic space coverage. It also demonstrates that a variety of discovered air combat tactics are comparable to human experts’ knowledge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助将个烂就采纳,获得10
刚刚
研友_VZG7GZ应助ZiZi采纳,获得10
刚刚
lili完成签到 ,获得积分10
刚刚
123完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
冉冰发布了新的文献求助50
2秒前
2秒前
嘎哈完成签到 ,获得积分10
3秒前
tdtk发布了新的文献求助10
3秒前
务实擎汉发布了新的文献求助10
3秒前
自信青筠发布了新的文献求助10
3秒前
4秒前
4秒前
HgPP完成签到 ,获得积分10
4秒前
LZH发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
Alex完成签到 ,获得积分10
5秒前
5秒前
Charley完成签到,获得积分10
5秒前
Mia完成签到 ,获得积分10
5秒前
KEYANDOG完成签到,获得积分10
5秒前
5秒前
ding应助囡囡不难采纳,获得10
6秒前
水花兄弟完成签到,获得积分10
6秒前
俏皮熊猫发布了新的文献求助10
7秒前
烟花应助木又权采纳,获得10
7秒前
peng发布了新的文献求助30
7秒前
8秒前
Jasper应助垦丁的海啊采纳,获得10
8秒前
8秒前
kokodayour完成签到,获得积分10
9秒前
Fafa发布了新的文献求助10
9秒前
9秒前
9秒前
02发布了新的文献求助10
9秒前
曹梦梦完成签到,获得积分10
9秒前
Congying发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505397
求助须知:如何正确求助?哪些是违规求助? 4600897
关于积分的说明 14474868
捐赠科研通 4535091
什么是DOI,文献DOI怎么找? 2485112
邀请新用户注册赠送积分活动 1468204
关于科研通互助平台的介绍 1440675