Discovering Expert-Level Air Combat Knowledge via Deep Excitatory-Inhibitory Factorized Reinforcement Learning

计算机科学 强化学习 抑制性突触后电位 人工智能 兴奋性突触后电位 机器学习 神经科学 生物
作者
Haiyin Piao,Shengqi Yang,Hechang Chen,Junnan Li,Jin Yu,Xuanqi Peng,Xin Yang,Zhen Yang,Zhixiao Sun,Yi Chang
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
卷期号:15 (4): 1-28 被引量:1
标识
DOI:10.1145/3653979
摘要

Artificial Intelligence (AI) has achieved a wide range of successes in autonomous air combat decision-making recently. Previous research demonstrated that AI-enabled air combat approaches could even acquire beyond human-level capabilities. However, there remains a lack of evidence regarding two major difficulties. First, the existing methods with fixed decision intervals are mostly devoted to solving what to act but merely pay attention to when to act, which occasionally misses optimal decision opportunities. Second, the method of an expert-crafted finite maneuver library leads to a lack of tactics diversity, which is vulnerable to an opponent equipped with new tactics. In view of this, we propose a novel Deep Reinforcement Learning (DRL) and prior knowledge hybrid autonomous air combat tactics discovering algorithm, namely deep E xcitatory-i N hibitory f ACT or I zed maneu VE r ( ENACTIVE ) learning. The algorithm consists of two key modules, i.e., ENHANCE and FACTIVE. Specifically, ENHANCE learns to adjust the air combat decision-making intervals and appropriately seize key opportunities. FACTIVE factorizes maneuvers and then jointly optimizes them with significant tactics diversity increments. Extensive experimental results reveal that the proposed method outperforms state-of-the-art algorithms with a 62% winning rate and further obtains a margin of a 2.85-fold increase in terms of global tactic space coverage. It also demonstrates that a variety of discovered air combat tactics are comparable to human experts’ knowledge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叡叡发布了新的文献求助10
1秒前
3秒前
8R60d8应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
8R60d8应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
4秒前
JamesPei应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
Singularity应助科研通管家采纳,获得10
5秒前
8R60d8应助科研通管家采纳,获得10
5秒前
Singularity应助科研通管家采纳,获得10
5秒前
5秒前
Singularity应助科研通管家采纳,获得10
5秒前
pitto完成签到,获得积分10
9秒前
bkagyin应助小奕采纳,获得10
10秒前
13秒前
苏晓醒完成签到,获得积分10
14秒前
活泼红牛完成签到 ,获得积分20
16秒前
爆米花应助77采纳,获得10
17秒前
阿士大夫完成签到 ,获得积分10
18秒前
文献下载中完成签到,获得积分10
19秒前
20秒前
SciGPT应助文献下载中采纳,获得10
23秒前
小二郎应助SR4采纳,获得10
25秒前
白色风车发布了新的文献求助10
26秒前
26秒前
小杨完成签到,获得积分10
26秒前
一一完成签到,获得积分10
28秒前
32秒前
我是老大应助Pises采纳,获得10
34秒前
清漪完成签到 ,获得积分10
36秒前
39秒前
良辰应助精明青寒采纳,获得10
40秒前
我是老大应助高贵的鱼采纳,获得10
41秒前
OrangeBlueHeart完成签到,获得积分10
41秒前
尽原词完成签到,获得积分10
42秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161827
求助须知:如何正确求助?哪些是违规求助? 2813059
关于积分的说明 7898411
捐赠科研通 2472080
什么是DOI,文献DOI怎么找? 1316331
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129