Discovering Expert-Level Air Combat Knowledge via Deep Excitatory-Inhibitory Factorized Reinforcement Learning

计算机科学 强化学习 抑制性突触后电位 人工智能 兴奋性突触后电位 机器学习 神经科学 生物
作者
Haiyin Piao,Shengqi Yang,Hechang Chen,Junnan Li,Jin Yu,Xuanqi Peng,Xin Yang,Zhen Yang,Zhixiao Sun,Yi Chang
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
卷期号:15 (4): 1-28 被引量:1
标识
DOI:10.1145/3653979
摘要

Artificial Intelligence (AI) has achieved a wide range of successes in autonomous air combat decision-making recently. Previous research demonstrated that AI-enabled air combat approaches could even acquire beyond human-level capabilities. However, there remains a lack of evidence regarding two major difficulties. First, the existing methods with fixed decision intervals are mostly devoted to solving what to act but merely pay attention to when to act, which occasionally misses optimal decision opportunities. Second, the method of an expert-crafted finite maneuver library leads to a lack of tactics diversity, which is vulnerable to an opponent equipped with new tactics. In view of this, we propose a novel Deep Reinforcement Learning (DRL) and prior knowledge hybrid autonomous air combat tactics discovering algorithm, namely deep E xcitatory-i N hibitory f ACT or I zed maneu VE r ( ENACTIVE ) learning. The algorithm consists of two key modules, i.e., ENHANCE and FACTIVE. Specifically, ENHANCE learns to adjust the air combat decision-making intervals and appropriately seize key opportunities. FACTIVE factorizes maneuvers and then jointly optimizes them with significant tactics diversity increments. Extensive experimental results reveal that the proposed method outperforms state-of-the-art algorithms with a 62% winning rate and further obtains a margin of a 2.85-fold increase in terms of global tactic space coverage. It also demonstrates that a variety of discovered air combat tactics are comparable to human experts’ knowledge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
思思发布了新的文献求助10
1秒前
sochiyuen完成签到,获得积分10
1秒前
shen发布了新的文献求助10
2秒前
草莓雪酪完成签到 ,获得积分10
2秒前
李雪发布了新的文献求助20
2秒前
Dave发布了新的文献求助10
3秒前
4秒前
缓慢珠发布了新的文献求助10
6秒前
7秒前
在水一方应助燕燕采纳,获得10
7秒前
枪手发布了新的文献求助10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
隐形曼青应助shen采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
糯米鸡完成签到,获得积分20
10秒前
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
柯一一应助科研通管家采纳,获得50
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
jam完成签到,获得积分10
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
柯一一应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
11秒前
orixero应助科研通管家采纳,获得10
11秒前
柯一一应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
小富婆发布了新的文献求助10
11秒前
柯一一应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959677
求助须知:如何正确求助?哪些是违规求助? 3505910
关于积分的说明 11126825
捐赠科研通 3237865
什么是DOI,文献DOI怎么找? 1789389
邀请新用户注册赠送积分活动 871691
科研通“疑难数据库(出版商)”最低求助积分说明 802963