RCBEVDet: Radar-camera Fusion in Bird's Eye View for 3D Object Detection

计算机视觉 人工智能 计算机科学 对象(语法) 雷达 融合 目标检测 遥感 计算机图形学(图像) 地理 模式识别(心理学) 电信 语言学 哲学
作者
Zhiwei Lin,Zhe Liu,Zhongyu Xia,Xinhao Wang,Yongtao Wang,Shengxiang Qi,Dong Yang,Nan Dong,Le Zhang,Ce Zhu
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2403.16440
摘要

Three-dimensional object detection is one of the key tasks in autonomous driving. To reduce costs in practice, low-cost multi-view cameras for 3D object detection are proposed to replace the expansive LiDAR sensors. However, relying solely on cameras is difficult to achieve highly accurate and robust 3D object detection. An effective solution to this issue is combining multi-view cameras with the economical millimeter-wave radar sensor to achieve more reliable multi-modal 3D object detection. In this paper, we introduce RCBEVDet, a radar-camera fusion 3D object detection method in the bird's eye view (BEV). Specifically, we first design RadarBEVNet for radar BEV feature extraction. RadarBEVNet consists of a dual-stream radar backbone and a Radar Cross-Section (RCS) aware BEV encoder. In the dual-stream radar backbone, a point-based encoder and a transformer-based encoder are proposed to extract radar features, with an injection and extraction module to facilitate communication between the two encoders. The RCS-aware BEV encoder takes RCS as the object size prior to scattering the point feature in BEV. Besides, we present the Cross-Attention Multi-layer Fusion module to automatically align the multi-modal BEV feature from radar and camera with the deformable attention mechanism, and then fuse the feature with channel and spatial fusion layers. Experimental results show that RCBEVDet achieves new state-of-the-art radar-camera fusion results on nuScenes and view-of-delft (VoD) 3D object detection benchmarks. Furthermore, RCBEVDet achieves better 3D detection results than all real-time camera-only and radar-camera 3D object detectors with a faster inference speed at 21~28 FPS. The source code will be released at https://github.com/VDIGPKU/RCBEVDet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
称心鸵鸟发布了新的文献求助10
1秒前
一一完成签到,获得积分10
1秒前
1秒前
科研通AI2S应助hhh采纳,获得10
2秒前
共享精神应助海森堡采纳,获得10
3秒前
彩色的恋风完成签到,获得积分10
4秒前
坚强的广山应助szy采纳,获得200
6秒前
Chunsong发布了新的文献求助10
7秒前
11秒前
清爽的孤萍完成签到 ,获得积分10
11秒前
11秒前
脑洞疼应助党旭龙采纳,获得20
14秒前
14秒前
16秒前
16秒前
丘比特应助莫里亚蒂采纳,获得10
17秒前
17秒前
七星龙渊发布了新的文献求助20
19秒前
Noah发布了新的文献求助10
22秒前
Qiao发布了新的文献求助10
22秒前
Zuo发布了新的文献求助10
22秒前
23秒前
婷婷应助Zhang采纳,获得10
23秒前
23秒前
25秒前
文艺的烧鹅完成签到,获得积分10
25秒前
25秒前
少年与梦完成签到 ,获得积分10
26秒前
28秒前
28秒前
莫里亚蒂发布了新的文献求助10
28秒前
怀火完成签到,获得积分20
29秒前
不鸭完成签到 ,获得积分10
29秒前
海森堡发布了新的文献求助10
29秒前
小糖完成签到 ,获得积分10
31秒前
褪山海发布了新的文献求助50
33秒前
123完成签到 ,获得积分10
35秒前
wangrong完成签到 ,获得积分10
36秒前
37秒前
自信向梦完成签到,获得积分10
39秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164337
求助须知:如何正确求助?哪些是违规求助? 2815164
关于积分的说明 7907823
捐赠科研通 2474743
什么是DOI,文献DOI怎么找? 1317626
科研通“疑难数据库(出版商)”最低求助积分说明 631898
版权声明 602234