RCBEVDet: Radar-camera Fusion in Bird's Eye View for 3D Object Detection

计算机视觉 人工智能 计算机科学 对象(语法) 雷达 融合 目标检测 遥感 计算机图形学(图像) 地理 模式识别(心理学) 电信 哲学 语言学
作者
Zhiwei Lin,Zhe Liu,Zhongyu Xia,Xinhao Wang,Yongtao Wang,Shengxiang Qi,Dong Yang,Nan Dong,Le Zhang,Ce Zhu
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2403.16440
摘要

Three-dimensional object detection is one of the key tasks in autonomous driving. To reduce costs in practice, low-cost multi-view cameras for 3D object detection are proposed to replace the expansive LiDAR sensors. However, relying solely on cameras is difficult to achieve highly accurate and robust 3D object detection. An effective solution to this issue is combining multi-view cameras with the economical millimeter-wave radar sensor to achieve more reliable multi-modal 3D object detection. In this paper, we introduce RCBEVDet, a radar-camera fusion 3D object detection method in the bird's eye view (BEV). Specifically, we first design RadarBEVNet for radar BEV feature extraction. RadarBEVNet consists of a dual-stream radar backbone and a Radar Cross-Section (RCS) aware BEV encoder. In the dual-stream radar backbone, a point-based encoder and a transformer-based encoder are proposed to extract radar features, with an injection and extraction module to facilitate communication between the two encoders. The RCS-aware BEV encoder takes RCS as the object size prior to scattering the point feature in BEV. Besides, we present the Cross-Attention Multi-layer Fusion module to automatically align the multi-modal BEV feature from radar and camera with the deformable attention mechanism, and then fuse the feature with channel and spatial fusion layers. Experimental results show that RCBEVDet achieves new state-of-the-art radar-camera fusion results on nuScenes and view-of-delft (VoD) 3D object detection benchmarks. Furthermore, RCBEVDet achieves better 3D detection results than all real-time camera-only and radar-camera 3D object detectors with a faster inference speed at 21~28 FPS. The source code will be released at https://github.com/VDIGPKU/RCBEVDet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
stepha发布了新的文献求助10
1秒前
kevin完成签到 ,获得积分10
1秒前
善学以致用应助啦啦啦采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
kyoko886发布了新的文献求助10
5秒前
7秒前
7秒前
312034发布了新的文献求助30
7秒前
7秒前
8秒前
9秒前
满家归寻完成签到 ,获得积分10
9秒前
司空笑白发布了新的文献求助10
12秒前
stepha完成签到,获得积分10
12秒前
yeyeye发布了新的文献求助10
12秒前
云之南完成签到,获得积分20
13秒前
13秒前
啦啦啦发布了新的文献求助10
14秒前
14秒前
17秒前
kyoko886完成签到,获得积分10
17秒前
wu8577应助小猪玉采纳,获得10
17秒前
wenxian完成签到,获得积分10
20秒前
xiaozhao发布了新的文献求助150
20秒前
20秒前
20秒前
FashionBoy应助司空笑白采纳,获得10
22秒前
23秒前
24秒前
Merlin应助陈三三采纳,获得30
24秒前
嗯嗯嗯发布了新的文献求助10
27秒前
白羊完成签到,获得积分10
27秒前
chensihao发布了新的文献求助10
28秒前
谦让的莆完成签到 ,获得积分10
28秒前
李爱国应助xiaohong采纳,获得10
29秒前
31秒前
梦灵发布了新的文献求助10
32秒前
123456发布了新的文献求助10
32秒前
充电宝应助Wang采纳,获得10
33秒前
简时完成签到 ,获得积分10
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958114
求助须知:如何正确求助?哪些是违规求助? 3504298
关于积分的说明 11117743
捐赠科研通 3235614
什么是DOI,文献DOI怎么找? 1788403
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802547