已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Acceleration mechanisms of energetic ion debris in laser-driven tin plasma EUV sources

极紫外光刻 等离子体 极端紫外线 物理 离子 轴向对称偏滤器实验 原子物理学 激光器 材料科学 光学 核物理学 量子力学 冶金 托卡马克
作者
Samuel Totorica,K. V. Lezhnin,D. J. Hemminga,J. González,John Sheil,A. Diallo,A. Hyder,W. Fox
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:124 (17) 被引量:1
标识
DOI:10.1063/5.0200896
摘要

Laser-driven tin plasmas are driving new-generation nanolithography as sources of extreme ultraviolet (EUV) radiation centered at 13.5 nm. A major challenge facing industrial EUV source development is predicting energetic ion debris produced during the plasma expansion that may damage the sensitive EUV channeling multilayer optics. Gaining a detailed understanding of the plasma dynamics and ion acceleration mechanisms in these sources could provide critical insights for designing debris mitigation strategies in future high-power EUV sources. We develop a fully kinetic model of tin-EUV sources using one-dimensional particle-in-cell simulations to study ion debris acceleration, which will be valuable for cross-validation of radiation-hydrodynamic simulations. An inverse-bremsstrahlung heating operator is used to model the interaction of a tin target with an Nd:YAG laser, and thermal conduction is included through a Monte Carlo Coulomb collision operator. While the large-scale evolution is in reasonable agreement with analogous hydrodynamic simulations, the significant timescale for collisional equilibration between electrons and ions allows for the development of prominent two-temperature features. A collimated flow of energetic ions is produced with a spectrum that is significantly enhanced at high energies compared to fluid simulations. The dominant acceleration mechanism is found to be a large-scale electric field supported mainly by the electron pressure gradient, which is enhanced in the kinetic simulations due to the increased electron temperature. We discuss the implications of these results for future modeling of tin-EUV sources and the development of debris mitigation schemes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
11发布了新的文献求助30
3秒前
郭文汇发布了新的文献求助10
3秒前
3秒前
4秒前
北斋发布了新的文献求助10
4秒前
5秒前
css发布了新的文献求助10
5秒前
科研通AI2S应助研友_8KX15L采纳,获得30
7秒前
Han发布了新的文献求助10
9秒前
10秒前
善学以致用应助www采纳,获得10
11秒前
雨筝发布了新的文献求助10
13秒前
杳鸢应助yuanll采纳,获得10
14秒前
14秒前
larder完成签到 ,获得积分10
16秒前
林钟九畹完成签到,获得积分10
20秒前
喻鞅完成签到,获得积分10
21秒前
丘比特应助rookiefcb采纳,获得10
23秒前
开心完成签到,获得积分10
25秒前
Tylose给简单外绣的求助进行了留言
26秒前
27秒前
hugeyoung完成签到,获得积分10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
搜集达人应助科研通管家采纳,获得10
29秒前
NexusExplorer应助科研通管家采纳,获得50
29秒前
cocolu应助科研通管家采纳,获得10
29秒前
29秒前
小马甲应助科研通管家采纳,获得10
29秒前
29秒前
ppy完成签到 ,获得积分10
30秒前
热电老白鼠完成签到,获得积分10
33秒前
杳鸢应助yuanll采纳,获得10
34秒前
苍狼BH发布了新的文献求助10
34秒前
丘比特应助Singularity采纳,获得10
35秒前
36秒前
子车茗应助h3xxxmax采纳,获得10
37秒前
37秒前
潇洒的浩然完成签到,获得积分10
39秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3219405
求助须知:如何正确求助?哪些是违规求助? 2868251
关于积分的说明 8160270
捐赠科研通 2535304
什么是DOI,文献DOI怎么找? 1367697
科研通“疑难数据库(出版商)”最低求助积分说明 645090
邀请新用户注册赠送积分活动 618390