SAMSNeRF: segment anything model (SAM) guided dynamic surgical scene reconstruction by neural radiance field (NeRF)

光辉 计算机科学 领域(数学) 计算机视觉 人工智能 计算机图形学(图像) 地质学 遥感 数学 纯数学
作者
Ange Lou,Yamin Li,Xing Yao,Yike Zhang,Jack H. Noble
标识
DOI:10.1117/12.3008392
摘要

The accurate reconstruction of surgical scenes from surgical videos is critical for various applications, including intraoperative navigation and image-guided robotic surgery automation. However, previous approaches, mainly relying on depth estimation, have limited effectiveness in reconstructing surgical scenes with moving surgical tools. To address this limitation and provide accurate 3D position prediction for surgical tools in all frames, we propose a novel approach called SAMSNeRF that combines Segment Anything Model (SAM) and Neural Radiance Field (NeRF) techniques. Our approach generates accurate segmentation masks of surgical tools using SAM, which guides the refinement of the dynamic surgical scene reconstruction by NeRF. Our experimental results on public endoscopy surgical videos demonstrate that our approach successfully reconstructs high-fidelity dynamic surgical scenes and accurately reflects the spatial information of surgical tools. Our proposed approach can significantly enhance surgical navigation and automation by providing surgeons with accurate 3D position information of surgical tools during surgery. The code will be released soon at: https://github.com/AngeLouCN/SAMSNeRF
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lfzw完成签到,获得积分10
1秒前
1秒前
SciGPT应助zhaoyaoshi采纳,获得10
1秒前
steventj完成签到,获得积分10
1秒前
1秒前
李欣月完成签到,获得积分10
3秒前
脑洞疼应助识檐采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
锅锅发布了新的文献求助10
4秒前
优雅山柏发布了新的文献求助10
5秒前
凯睿发布了新的文献求助10
5秒前
南辕北辙完成签到,获得积分10
5秒前
充电宝应助悄悄采纳,获得10
5秒前
SMLW发布了新的文献求助10
6秒前
Dr.zhou发布了新的文献求助10
6秒前
318yyl完成签到,获得积分10
6秒前
7秒前
洁净艳一完成签到,获得积分10
9秒前
9秒前
CodeCraft应助pu采纳,获得10
9秒前
Orange应助陈最采纳,获得10
10秒前
SciGPT应助猪猪hero采纳,获得10
10秒前
陈泽宇完成签到,获得积分10
11秒前
xinyuY发布了新的文献求助20
11秒前
11秒前
不散的和弦完成签到,获得积分10
12秒前
Dr.zhou完成签到,获得积分10
13秒前
13秒前
14秒前
16秒前
16秒前
17秒前
科目三应助DOC_LIU采纳,获得10
17秒前
FashionBoy应助江屿采纳,获得10
18秒前
超级盼烟发布了新的文献求助10
19秒前
19秒前
九日科研ing完成签到,获得积分0
20秒前
20秒前
令和完成签到 ,获得积分10
20秒前
猪猪hero发布了新的文献求助10
20秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961189
求助须知:如何正确求助?哪些是违规求助? 3507456
关于积分的说明 11136282
捐赠科研通 3239926
什么是DOI,文献DOI怎么找? 1790545
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803152