A coupled-GAN architecture to fuse MRI and PET image features for multi-stage classification of Alzheimer’s disease

保险丝(电气) 阶段(地层学) 计算机科学 建筑 图像(数学) 疾病 人工智能 计算机视觉 模式识别(心理学) 病理 医学 电气工程 生物 工程类 历史 考古 古生物学
作者
Chandrajit Choudhury,Tripti Goel,M. Tanveer
出处
期刊:Information Fusion [Elsevier BV]
卷期号:109: 102415-102415 被引量:5
标识
DOI:10.1016/j.inffus.2024.102415
摘要

Alzheimer's disease (AD) is a degenerative neurological ailment that begins with memory loss and ultimately leads to a total loss of mental capacity. Researchers are interested in using magnetic resonance imaging (MRI) and positron emission tomography (PET) to find people with mild cognitive impairment (MCI), which is a stage before Alzheimer's disease (AD). Significant hippocampal loss and temporal lobe atrophy characterize the transition from MCI to AD, which can be visualized using T1-W structural MRI. PET visualizes brain glucose metabolism, which indicates neuronal activity, making it a viable neuroimaging method for AD diagnosis. The extraction and fusion of structural and metabolite information about brain alterations contained in multimodal data is crucial for achieving an appropriate classification result. Therefore, in this work a new end-to-end coupled-GAN (CGAN) architecture is introduced. The proposed CGANC network consists of two sub-models: a CGAN for extraction of fused features from multimodal data, and a CNN classifier to classify these features. The proposed CGAN model is trained to encode MRI and PET images into a shared latent space. The fused features are extracted from this shared latent space and then are classified according to particular stage of AD. In order to test the effectiveness of the suggested approach, experiments are done on the publicly available ADNI dataset and compared with state-of-the-art methods. The proposed method's source code will be made freely available at https://github.com/ChandrajitChoudhury/CGAN-AD . • MRI and PET images are fused to utilize structural and metabolic features for AD diagnosis. • An adversarial learning-based method is proposed to extract fused features. • A coupled adversarial subnetwork and a classification subnetwork have been designed. • Experiments are done on the publicly available ADNI dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
可爱的函函应助Jy采纳,获得10
刚刚
1秒前
pysa发布了新的文献求助10
1秒前
1秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
畅快的胡萝卜完成签到,获得积分10
3秒前
Lucas应助李萍萍采纳,获得10
3秒前
myyy完成签到 ,获得积分10
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
yiyi037118发布了新的文献求助100
4秒前
顾矜应助紧张的含羞草采纳,获得10
5秒前
9秒前
量子星尘发布了新的文献求助50
10秒前
小酒很努力吖完成签到 ,获得积分10
10秒前
11秒前
Wy发布了新的文献求助10
12秒前
13秒前
LinglongCai完成签到 ,获得积分10
15秒前
Jy发布了新的文献求助10
16秒前
池寒完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
21秒前
传奇3应助Jy采纳,获得10
21秒前
黑子哲也完成签到 ,获得积分10
22秒前
24秒前
Wy完成签到,获得积分10
25秒前
26秒前
26秒前
量子星尘发布了新的文献求助10
26秒前
我是老大应助you采纳,获得10
28秒前
池寒1完成签到 ,获得积分10
28秒前
29秒前
伯赏芷烟完成签到,获得积分10
30秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints: The significance of the rivet squeeze force, and a comparison of 2024-T3 and Glare 3 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3664493
求助须知:如何正确求助?哪些是违规求助? 3224499
关于积分的说明 9757818
捐赠科研通 2934401
什么是DOI,文献DOI怎么找? 1606848
邀请新用户注册赠送积分活动 758873
科研通“疑难数据库(出版商)”最低求助积分说明 735012