医学
观察研究
固定(群体遗传学)
股骨
人口
放射性武器
前瞻性队列研究
外科
内科学
环境卫生
作者
Eic Ju Lim,Jae‐Woo Cho,Oog-Jin Shon,Jong‐Keon Oh,Kyu Tae Hwang,Gwang Chul Lee
标识
DOI:10.1016/j.jos.2024.03.007
摘要
The stiffness of locked plates suppresses healing process, prompting the introduction of far cortical locking to address this issue. This study aimed to demonstrate the clinical efficacy of far cortical locking constructs in treating distal femoral fractures in an Asian population. This multicenter prospective observational study was conducted at four university hospitals between February 2018 and February 2021. Demographic data, the presence of metaphyseal comminution, and surgical fixation details were recorded. Clinical outcomes, including single-leg standing, EQ-5D, and EQ-VAS scores, and radiologic outcomes, including the RUST score of each cortex, were evaluated and compared according to the presence of metaphyseal comminution. There were 37 patients (14 men and 23 women) with a mean age of 67.3 ± 11.8 years. Twenty-two patients had metaphyseal comminution (59%), and 15 presented simple fractures in metaphyseal areas. Four patients (13%) could stand on one leg >10s at 6 weeks, and 24 patients (92%) at 1 year. EQ-5D increased from 0.022 ± 0.388 to 0.692 ± 0.347, and the mean EQ-VAS 51.1 ± 13.1 to 74.1 ± 24.1 between discharge (n = 37) and post-operative 1 year (n = 33), respectively. RUST score presented increment for time, from 6.2 ± 1.8 at 6 week to 11.6 ± 1.1 at 1 year. Radiological healing demonstrated rapid increase from week 6 (16/28, 43%) to month 3 (27/31, 87%), with no obvious increase was observed in 6 months (23/26, 89%) or 12 months (25/28, 89%). Simple metaphyseal fractures presented significantly higher RUST scores at 6 weeks and 3 months, but there was no difference in RUST scores at 6 months or 1 year according to metaphyseal comminution. Plate constructs with far cortical locking screws provided safe and effective fixation for distal femoral fractures, with consistent radiological and clinical results, regardless of metaphyseal comminution.
科研通智能强力驱动
Strongly Powered by AbleSci AI