Boosting tetracycline degradation of BaTiO3-based piezo-catalysts via modulating phase boundary and band structure

压电 相界 材料科学 钙钛矿(结构) 四方晶系 吉布斯自由能 带隙 催化作用 机械化学 正交晶系 纳米发生器 化学工程 纳米技术 相(物质) 光电子学 化学 结晶学 复合材料 晶体结构 有机化学 热力学 物理 工程类
作者
Runtian Xu,Zhiyong Liu,Bing Xie,Longlong Shu,Biaolin Peng
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
卷期号:665: 888-897
标识
DOI:10.1016/j.jcis.2024.03.191
摘要

Piezoelectric catalysis, which converts mechanical energy into chemical activity, has important applications in environmental remediation. However, the piezo-catalytic activity of various piezoelectric materials is limited by the weak piezoelectricity as well as the mismatched band-gap, leading to inefficient electron-hole pair generation and difficult carrier migration. Here, a simple strategy combining phase boundary and energy band structure modulation was innovatively proposed to enhance the piezo-catalytic activity of BaTiO3 ferroelectric by Ce ions selecting different doping sites. Thanks to the coexistence of tetragonal (P4mm) and orthorhombic (Amm2) phases effectively flattened the Gibbs free-energy and thus enhanced the piezoelectric activity, as well as suitable energy bandwidth facilitating the carrier migration were realized in the B-sites doped Ba(Ti0.95Ce0.05)O3. The degradation rate constant k of tetracycline (TC) was high to 30.56 × 10-3 min−1, which was 2.03 times higher than that of pure BaTiO3 and superior to most representative lead-free perovskite piezoelectric materials. Theoretical calculations validated that the charge density and high O2 and OH– adsorption energy on the Ba(Ti0.95Ce0.05)O3 surface promoted more efficient •O2– and •OH radicals conversion and bettered response to piezo-catalytic reaction. This work is important to design high-performance piezo-catalysts by synergistic regulation of phase boundary and energy band structure in perovskite materials for long-term antibiotic tetracycline removal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋之月发布了新的文献求助10
1秒前
skier发布了新的文献求助10
2秒前
balabala完成签到,获得积分20
2秒前
隐形曼青应助kb采纳,获得10
3秒前
yanyan发布了新的文献求助10
5秒前
繁笙完成签到 ,获得积分10
5秒前
5秒前
无言完成签到 ,获得积分10
5秒前
NONO完成签到 ,获得积分10
6秒前
星辰大海应助TT采纳,获得10
6秒前
8秒前
康康完成签到,获得积分10
8秒前
Xv完成签到,获得积分0
8秒前
11秒前
11秒前
香蕉觅云应助zfzf0422采纳,获得10
11秒前
12秒前
12秒前
李健应助爱听歌的向日葵采纳,获得10
13秒前
今后应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
烟花应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得80
13秒前
所所应助科研通管家采纳,获得20
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
Owen应助科研通管家采纳,获得30
14秒前
婷婷发布了新的文献求助10
14秒前
zzt完成签到,获得积分10
16秒前
张小汉发布了新的文献求助30
17秒前
二十四发布了新的文献求助10
17秒前
赘婿应助junzilan采纳,获得10
17秒前
FashionBoy应助勤恳的雨文采纳,获得10
17秒前
aaa完成签到,获得积分10
18秒前
19秒前
11111完成签到,获得积分20
20秒前
仔wang完成签到,获得积分10
20秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824