Boosting tetracycline degradation of BaTiO3-based piezo-catalysts via modulating phase boundary and band structure

降级(电信) Boosting(机器学习) 相界 材料科学 四环素 催化作用 化学工程 相(物质) 化学 计算机科学 电子工程 有机化学 人工智能 生物化学 抗生素 工程类
作者
Runtian Xu,Zhiyong Liu,Bing Xie,Longlong Shu,Biaolin Peng
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
卷期号:665: 888-897 被引量:36
标识
DOI:10.1016/j.jcis.2024.03.191
摘要

Piezoelectric catalysis, which converts mechanical energy into chemical activity, has important applications in environmental remediation. However, the piezo-catalytic activity of various piezoelectric materials is limited by the weak piezoelectricity as well as the mismatched band-gap, leading to inefficient electron-hole pair generation and difficult carrier migration. Here, a simple strategy combining phase boundary and energy band structure modulation was innovatively proposed to enhance the piezo-catalytic activity of BaTiO3 ferroelectric by Ce ions selecting different doping sites. Thanks to the coexistence of tetragonal (P4mm) and orthorhombic (Amm2) phases effectively flattened the Gibbs free-energy and thus enhanced the piezoelectric activity, as well as suitable energy bandwidth facilitating the carrier migration were realized in the B-sites doped Ba(Ti0.95Ce0.05)O3. The degradation rate constant k of tetracycline (TC) was high to 30.56 × 10-3 min−1, which was 2.03 times higher than that of pure BaTiO3 and superior to most representative lead-free perovskite piezoelectric materials. Theoretical calculations validated that the charge density and high O2 and OH– adsorption energy on the Ba(Ti0.95Ce0.05)O3 surface promoted more efficient •O2– and •OH radicals conversion and bettered response to piezo-catalytic reaction. This work is important to design high-performance piezo-catalysts by synergistic regulation of phase boundary and energy band structure in perovskite materials for long-term antibiotic tetracycline removal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aifeeling完成签到,获得积分10
刚刚
1秒前
莓莓MM完成签到 ,获得积分10
2秒前
念之完成签到 ,获得积分10
2秒前
筱xiao完成签到,获得积分10
5秒前
PhD_Ren完成签到,获得积分10
8秒前
yyy完成签到,获得积分10
10秒前
落后如彤完成签到,获得积分10
15秒前
16秒前
17秒前
vivi完成签到 ,获得积分10
17秒前
啵啵阳子完成签到,获得积分10
18秒前
潮湿小兰花完成签到,获得积分10
19秒前
20秒前
20秒前
飞流直下发布了新的文献求助10
21秒前
waws完成签到,获得积分10
24秒前
我是老大应助柳叶刀采纳,获得10
25秒前
26秒前
执着的一兰完成签到,获得积分10
26秒前
飞流直下完成签到,获得积分20
26秒前
27秒前
天天摸鱼完成签到,获得积分10
27秒前
美满平松发布了新的文献求助10
32秒前
李大胖胖完成签到 ,获得积分10
32秒前
小西瓜完成签到 ,获得积分10
32秒前
学术大亨完成签到,获得积分10
35秒前
科研通AI6应助Yuki采纳,获得30
37秒前
37秒前
脑洞疼应助HanJinyu采纳,获得30
37秒前
sssss发布了新的文献求助10
41秒前
HH完成签到,获得积分10
42秒前
柳叶刀发布了新的文献求助10
42秒前
QIQI完成签到,获得积分10
43秒前
44秒前
QIQI发布了新的文献求助10
48秒前
范米粒发布了新的文献求助10
49秒前
留无影完成签到,获得积分10
50秒前
乐乐应助hui采纳,获得10
52秒前
77完成签到,获得积分20
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565449
求助须知:如何正确求助?哪些是违规求助? 4650499
关于积分的说明 14691551
捐赠科研通 4592435
什么是DOI,文献DOI怎么找? 2519635
邀请新用户注册赠送积分活动 1492011
关于科研通互助平台的介绍 1463232