Predicting shear stress distribution on structural surfaces under internal solitary wave loading: A deep learning perspective

物理 透视图(图形) 分布(数学) 剪切(地质) 剪应力 机械 经典力学 统计物理学 数学分析 几何学 复合材料 材料科学 数学
作者
Miao Zhang,Haibao Hu,Binbin Guo,Qianyong Liang,Fan Zhang,Xiaopeng Chen,Zhongliang Xie,Peng Du
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (3) 被引量:10
标识
DOI:10.1063/5.0189703
摘要

The density of the ocean varies unevenly along the vertical axis. In the presence of external disturbances, internal solitary waves (ISWs) are generated. The strong shear flow field induced by ISW seriously threatens the operational safety of marine structures. Therefore, it has become a hot spot to study the force law of marine structures in ISW. The existing studies are conducted when the ISW parameters are known. However, ISW is not visible in real situations, which leads to difficulties in obtaining ISW parameters. Therefore, it is of great engineering value to accomplish real-time force prediction of marine structures without knowing the ISW parameters in advance. To fill the gap, this study proposes a novel hydrodynamic prediction model with a sensor array as the sensing system and a deep learning algorithm as the decision-making system. The model successfully achieves accurate prediction of the shear stress on the cylinder in the ISW. In addition, a technique for optimizing sensor placement is proposed. This will help identify critical regions in the graphical representations to enhance exploration of flow field information. The results demonstrate that the prediction accuracy of the optimized sensor layout scheme surpasses that of randomly deployed sensors. As a result, this study will provide an important assurance for the safe operation of marine structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zz完成签到,获得积分10
刚刚
Prandtl完成签到 ,获得积分10
2秒前
3秒前
zfzf0422完成签到 ,获得积分10
4秒前
上官若男应助jackie采纳,获得10
4秒前
4秒前
我是站长才怪应助Benliu采纳,获得20
5秒前
5秒前
zh20130完成签到,获得积分10
5秒前
5秒前
TT发布了新的文献求助10
6秒前
Star1983发布了新的文献求助10
6秒前
研友_LXdbaL完成签到,获得积分10
7秒前
8秒前
在水一方应助66采纳,获得10
9秒前
9秒前
9秒前
缘一发布了新的文献求助10
10秒前
junzilan发布了新的文献求助10
11秒前
CipherSage应助赖道之采纳,获得10
12秒前
ccc完成签到,获得积分10
12秒前
12秒前
12秒前
15秒前
Pauline完成签到,获得积分10
17秒前
jackie发布了新的文献求助10
17秒前
笨笨摇伽发布了新的文献求助10
19秒前
科目三应助皓月繁星采纳,获得10
19秒前
tomato完成签到,获得积分20
21秒前
CodeCraft应助缘一采纳,获得10
22秒前
小二郎应助刘铭晨采纳,获得10
22秒前
22秒前
大个应助风雨1210采纳,获得10
22秒前
一壶清酒完成签到,获得积分10
22秒前
23秒前
tomato发布了新的文献求助30
24秒前
陈莹发布了新的文献求助10
25秒前
26秒前
26秒前
小狗同志006完成签到,获得积分10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808