Applying image features of proximal paracancerous tissues in predicting prognosis of patients with hepatocellular carcinoma

肝细胞癌 医学 内科学 放射科 胃肠病学 病理 人工智能 计算机科学
作者
Siying Lin,Juanjuan Yong,Lei Zhang,Xiaolong Chen,Liang Qiao,Wei-Dong Pan,Yuedong Yang,Huiying Zhao
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:173: 108365-108365
标识
DOI:10.1016/j.compbiomed.2024.108365
摘要

Most of the methods using digital pathological image for predicting Hepatocellular carcinoma (HCC) prognosis have not considered paracancerous tissue microenvironment (PTME), which are potentially important for tumour initiation and metastasis. This study aimed to identify roles of image features of PTME in predicting prognosis and tumour recurrence of HCC patients. We collected whole slide images (WSIs) of 146 HCC patients from Sun Yat-sen Memorial Hospital (SYSM dataset). For each WSI, five types of regions of interests (ROIs) in PTME and tumors were manually annotated. These ROIs were used to construct a Lasso Cox survival model for predicting the prognosis of HCC patients. To make the model broadly useful, we established a deep learning method to automatically segment WSIs, and further used it to construct a prognosis prediction model. This model was tested by the samples of 225 HCC patients from the Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC). In predicting prognosis of the HCC patients, using the image features of manually annotated ROIs in PTME achieved C-index 0.668 in the SYSM testing dataset, which is higher than the C-index 0.648 reached by the model only using image features of tumors. Integrating ROIs of PTME and tumors achieved C-index 0.693 in the SYSM testing dataset. The model using automatically segmented ROIs of PTME and tumors achieved C-index of 0.665 (95% CI: 0.556–0.774) in the TCGA-LIHC samples, which is better than the widely used methods, WSISA (0.567), DeepGraphSurv (0.593), and SeTranSurv (0.642). Finally, we found the Texture SumAverage Skew HV on immune cell infiltration and Texture related features on desmoplastic reaction are the most important features of PTME in predicting HCC prognosis. We additionally used the model in prediction HCC recurrence for patients from SYSM-training, SYSM-testing, and TCGA-LIHC datasets, indicating the important roles of PTME in the prediction. Our results indicate image features of PTME is critical for improving the prognosis prediction of HCC. Moreover, the image features related with immune cell infiltration and desmoplastic reaction of PTME are the most important factors associated with prognosis of HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助无他采纳,获得10
刚刚
sp完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
5秒前
七页禾完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
桐桐应助傻子与白痴采纳,获得10
7秒前
7秒前
顾矜应助开心的凝云采纳,获得10
8秒前
8秒前
CodeCraft应助植物代谢采纳,获得10
8秒前
祗想静静嘚完成签到 ,获得积分10
8秒前
8秒前
9秒前
Criminology34应助feng采纳,获得10
9秒前
dz发布了新的文献求助10
9秒前
someone完成签到,获得积分10
9秒前
9秒前
9秒前
Airi完成签到,获得积分10
10秒前
11秒前
11秒前
文艺班发布了新的文献求助10
11秒前
俭朴新之完成签到 ,获得积分10
11秒前
QI完成签到 ,获得积分10
12秒前
13秒前
Jeffrey完成签到,获得积分10
13秒前
科研通AI6应助盼盼527采纳,获得10
14秒前
14秒前
15秒前
wxq发布了新的文献求助10
15秒前
英吉利25发布了新的文献求助30
15秒前
勤恳马里奥完成签到,获得积分0
16秒前
16秒前
16秒前
ningwu完成签到,获得积分10
16秒前
zhangjincheng完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4920881
求助须知:如何正确求助?哪些是违规求助? 4192265
关于积分的说明 13020962
捐赠科研通 3963415
什么是DOI,文献DOI怎么找? 2172449
邀请新用户注册赠送积分活动 1190294
关于科研通互助平台的介绍 1099258