Applying image features of proximal paracancerous tissues in predicting prognosis of patients with hepatocellular carcinoma

肝细胞癌 医学 内科学 放射科 胃肠病学 病理 人工智能 计算机科学
作者
Siying Lin,Juanjuan Yong,Lei Zhang,Xiaolong Chen,Liang Qiao,Wei-Dong Pan,Yuedong Yang,Huiying Zhao
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:173: 108365-108365
标识
DOI:10.1016/j.compbiomed.2024.108365
摘要

Most of the methods using digital pathological image for predicting Hepatocellular carcinoma (HCC) prognosis have not considered paracancerous tissue microenvironment (PTME), which are potentially important for tumour initiation and metastasis. This study aimed to identify roles of image features of PTME in predicting prognosis and tumour recurrence of HCC patients. We collected whole slide images (WSIs) of 146 HCC patients from Sun Yat-sen Memorial Hospital (SYSM dataset). For each WSI, five types of regions of interests (ROIs) in PTME and tumors were manually annotated. These ROIs were used to construct a Lasso Cox survival model for predicting the prognosis of HCC patients. To make the model broadly useful, we established a deep learning method to automatically segment WSIs, and further used it to construct a prognosis prediction model. This model was tested by the samples of 225 HCC patients from the Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC). In predicting prognosis of the HCC patients, using the image features of manually annotated ROIs in PTME achieved C-index 0.668 in the SYSM testing dataset, which is higher than the C-index 0.648 reached by the model only using image features of tumors. Integrating ROIs of PTME and tumors achieved C-index 0.693 in the SYSM testing dataset. The model using automatically segmented ROIs of PTME and tumors achieved C-index of 0.665 (95% CI: 0.556–0.774) in the TCGA-LIHC samples, which is better than the widely used methods, WSISA (0.567), DeepGraphSurv (0.593), and SeTranSurv (0.642). Finally, we found the Texture SumAverage Skew HV on immune cell infiltration and Texture related features on desmoplastic reaction are the most important features of PTME in predicting HCC prognosis. We additionally used the model in prediction HCC recurrence for patients from SYSM-training, SYSM-testing, and TCGA-LIHC datasets, indicating the important roles of PTME in the prediction. Our results indicate image features of PTME is critical for improving the prognosis prediction of HCC. Moreover, the image features related with immune cell infiltration and desmoplastic reaction of PTME are the most important factors associated with prognosis of HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一朵发布了新的文献求助10
刚刚
自由的雨南完成签到 ,获得积分10
刚刚
kk完成签到,获得积分10
3秒前
赘婿应助尹尹尹采纳,获得10
4秒前
5秒前
无花果应助拔丝香芋采纳,获得10
5秒前
6秒前
千前发布了新的文献求助10
11秒前
李若溪发布了新的文献求助10
12秒前
SC发布了新的文献求助10
15秒前
科研通AI2S应助宝林采纳,获得10
16秒前
完美毛豆发布了新的文献求助10
19秒前
怡然的怀莲完成签到 ,获得积分20
22秒前
历史雨发布了新的文献求助30
24秒前
25秒前
dudu10000完成签到,获得积分10
26秒前
知性的焦完成签到,获得积分20
26秒前
26秒前
天天快乐应助完美毛豆采纳,获得10
27秒前
敏感板栗发布了新的文献求助10
27秒前
30秒前
30秒前
32秒前
梨梨完成签到,获得积分10
34秒前
jianhan发布了新的文献求助10
35秒前
35秒前
Ava应助科研通管家采纳,获得10
35秒前
aldehyde应助科研通管家采纳,获得20
36秒前
汉堡包应助科研通管家采纳,获得10
36秒前
aldehyde应助科研通管家采纳,获得20
36秒前
852应助科研通管家采纳,获得10
36秒前
CAOHOU应助科研通管家采纳,获得10
36秒前
研友_VZG7GZ应助科研通管家采纳,获得10
36秒前
CAOHOU应助科研通管家采纳,获得10
36秒前
CAOHOU应助科研通管家采纳,获得10
36秒前
36秒前
小二郎应助科研通管家采纳,获得10
36秒前
CAOHOU应助科研通管家采纳,获得10
37秒前
半城微凉应助科研通管家采纳,获得10
37秒前
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966919
求助须知:如何正确求助?哪些是违规求助? 3512387
关于积分的说明 11162970
捐赠科研通 3247220
什么是DOI,文献DOI怎么找? 1793752
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804432