Applying image features of proximal paracancerous tissues in predicting prognosis of patients with hepatocellular carcinoma

肝细胞癌 医学 内科学 放射科 胃肠病学 病理 人工智能 计算机科学
作者
Siying Lin,Juanjuan Yong,Lei Zhang,Xiaolong Chen,Liang Qiao,Wei-Dong Pan,Yuedong Yang,Huiying Zhao
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:173: 108365-108365
标识
DOI:10.1016/j.compbiomed.2024.108365
摘要

Most of the methods using digital pathological image for predicting Hepatocellular carcinoma (HCC) prognosis have not considered paracancerous tissue microenvironment (PTME), which are potentially important for tumour initiation and metastasis. This study aimed to identify roles of image features of PTME in predicting prognosis and tumour recurrence of HCC patients. We collected whole slide images (WSIs) of 146 HCC patients from Sun Yat-sen Memorial Hospital (SYSM dataset). For each WSI, five types of regions of interests (ROIs) in PTME and tumors were manually annotated. These ROIs were used to construct a Lasso Cox survival model for predicting the prognosis of HCC patients. To make the model broadly useful, we established a deep learning method to automatically segment WSIs, and further used it to construct a prognosis prediction model. This model was tested by the samples of 225 HCC patients from the Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC). In predicting prognosis of the HCC patients, using the image features of manually annotated ROIs in PTME achieved C-index 0.668 in the SYSM testing dataset, which is higher than the C-index 0.648 reached by the model only using image features of tumors. Integrating ROIs of PTME and tumors achieved C-index 0.693 in the SYSM testing dataset. The model using automatically segmented ROIs of PTME and tumors achieved C-index of 0.665 (95% CI: 0.556–0.774) in the TCGA-LIHC samples, which is better than the widely used methods, WSISA (0.567), DeepGraphSurv (0.593), and SeTranSurv (0.642). Finally, we found the Texture SumAverage Skew HV on immune cell infiltration and Texture related features on desmoplastic reaction are the most important features of PTME in predicting HCC prognosis. We additionally used the model in prediction HCC recurrence for patients from SYSM-training, SYSM-testing, and TCGA-LIHC datasets, indicating the important roles of PTME in the prediction. Our results indicate image features of PTME is critical for improving the prognosis prediction of HCC. Moreover, the image features related with immune cell infiltration and desmoplastic reaction of PTME are the most important factors associated with prognosis of HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慧敏发布了新的文献求助50
2秒前
3秒前
黙宇循光发布了新的文献求助10
3秒前
cc完成签到,获得积分10
3秒前
feng完成签到,获得积分10
4秒前
害羞聋五完成签到,获得积分10
4秒前
5秒前
zsg完成签到,获得积分10
5秒前
Peyton Why发布了新的文献求助10
6秒前
阿王发布了新的文献求助10
8秒前
10秒前
句号完成签到,获得积分10
11秒前
11秒前
聪明眼睛完成签到,获得积分10
11秒前
健忘数据线完成签到 ,获得积分10
11秒前
11秒前
Crush完成签到,获得积分10
11秒前
无花果应助hamzhang0426采纳,获得10
12秒前
12秒前
yxw完成签到,获得积分10
14秒前
进取拼搏完成签到,获得积分10
15秒前
20秒前
invisiable完成签到,获得积分10
20秒前
小小完成签到 ,获得积分10
21秒前
DRAZ完成签到,获得积分10
22秒前
23秒前
obaica完成签到,获得积分10
23秒前
25秒前
gggghhhh完成签到 ,获得积分20
25秒前
loey完成签到,获得积分10
27秒前
hamzhang0426发布了新的文献求助10
27秒前
我不完成签到,获得积分10
29秒前
高挑的不凡完成签到,获得积分10
30秒前
pengrui0911完成签到 ,获得积分10
30秒前
32秒前
32秒前
Galaxy8完成签到,获得积分10
34秒前
微笑驳发布了新的文献求助10
35秒前
无奈的天玉完成签到,获得积分10
36秒前
xixi完成签到,获得积分10
36秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139963
求助须知:如何正确求助?哪些是违规求助? 2790878
关于积分的说明 7796853
捐赠科研通 2447242
什么是DOI,文献DOI怎么找? 1301754
科研通“疑难数据库(出版商)”最低求助积分说明 626336
版权声明 601194