Applying image features of proximal paracancerous tissues in predicting prognosis of patients with hepatocellular carcinoma

肝细胞癌 医学 内科学 放射科 胃肠病学 病理 人工智能 计算机科学
作者
Siying Lin,Juanjuan Yong,Lei Zhang,Xiaolong Chen,Liang Qiao,Wei-Dong Pan,Yuedong Yang,Huiying Zhao
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:173: 108365-108365
标识
DOI:10.1016/j.compbiomed.2024.108365
摘要

Most of the methods using digital pathological image for predicting Hepatocellular carcinoma (HCC) prognosis have not considered paracancerous tissue microenvironment (PTME), which are potentially important for tumour initiation and metastasis. This study aimed to identify roles of image features of PTME in predicting prognosis and tumour recurrence of HCC patients. We collected whole slide images (WSIs) of 146 HCC patients from Sun Yat-sen Memorial Hospital (SYSM dataset). For each WSI, five types of regions of interests (ROIs) in PTME and tumors were manually annotated. These ROIs were used to construct a Lasso Cox survival model for predicting the prognosis of HCC patients. To make the model broadly useful, we established a deep learning method to automatically segment WSIs, and further used it to construct a prognosis prediction model. This model was tested by the samples of 225 HCC patients from the Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC). In predicting prognosis of the HCC patients, using the image features of manually annotated ROIs in PTME achieved C-index 0.668 in the SYSM testing dataset, which is higher than the C-index 0.648 reached by the model only using image features of tumors. Integrating ROIs of PTME and tumors achieved C-index 0.693 in the SYSM testing dataset. The model using automatically segmented ROIs of PTME and tumors achieved C-index of 0.665 (95% CI: 0.556–0.774) in the TCGA-LIHC samples, which is better than the widely used methods, WSISA (0.567), DeepGraphSurv (0.593), and SeTranSurv (0.642). Finally, we found the Texture SumAverage Skew HV on immune cell infiltration and Texture related features on desmoplastic reaction are the most important features of PTME in predicting HCC prognosis. We additionally used the model in prediction HCC recurrence for patients from SYSM-training, SYSM-testing, and TCGA-LIHC datasets, indicating the important roles of PTME in the prediction. Our results indicate image features of PTME is critical for improving the prognosis prediction of HCC. Moreover, the image features related with immune cell infiltration and desmoplastic reaction of PTME are the most important factors associated with prognosis of HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼跃完成签到,获得积分10
刚刚
烟花应助Ricardo采纳,获得10
1秒前
zsh完成签到,获得积分20
1秒前
共享精神应助青wu采纳,获得10
1秒前
1秒前
搜集达人应助十月采纳,获得10
2秒前
慕青应助十月采纳,获得10
2秒前
上官若男应助十月采纳,获得10
2秒前
平淡的亦丝应助十月采纳,获得20
2秒前
3秒前
香蕉擎完成签到 ,获得积分10
3秒前
正常兔子完成签到,获得积分10
4秒前
纯真电源发布了新的文献求助10
4秒前
如果完成签到,获得积分10
5秒前
ludens完成签到,获得积分10
5秒前
5秒前
小蘑菇应助愉快的定帮采纳,获得10
5秒前
皮尤尤完成签到,获得积分20
6秒前
呼呼兔发布了新的文献求助10
6秒前
SYLH应助有何不可采纳,获得10
6秒前
宁哥查文完成签到,获得积分10
6秒前
我睡觉的时候不困完成签到 ,获得积分10
7秒前
麻烦~发布了新的文献求助10
7秒前
坚定小松鼠完成签到,获得积分10
8秒前
8秒前
zhangqi完成签到,获得积分10
9秒前
小橙子完成签到,获得积分10
9秒前
10秒前
zyh完成签到,获得积分10
10秒前
忧虑的访梦完成签到,获得积分10
11秒前
11秒前
qym发布了新的文献求助10
11秒前
12秒前
12秒前
小柠檬发布了新的文献求助10
13秒前
风思雅完成签到,获得积分10
13秒前
文艺雯发布了新的文献求助30
13秒前
阿尔法完成签到,获得积分10
13秒前
纯真电源完成签到,获得积分20
13秒前
lili完成签到 ,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678