Exploring the landscape of big data applications in librarianship: a bibliometric analysis of research trends and patterns

文献计量学 大数据 数据科学 图书馆学 计算机科学 万维网 地理 数据挖掘
作者
Md Nurul Islam,Guangwei Hu,Murtaza Ashiq,Shakil Ahmad
出处
期刊:Library Hi Tech [Emerald (MCB UP)]
标识
DOI:10.1108/lht-05-2023-0193
摘要

Purpose This bibliometric study aims to analyze the latest trends and patterns of big data applications in librarianship from 2000 to 2022. By conducting a comprehensive examination of the existing literature, this study aims to provide valuable insights into the emerging field of big data in librarianship and its potential impact on the future of libraries. Design/methodology/approach This study employed a rigorous four-stage process of identification, screening, eligibility and inclusion to filter and select the most relevant documents for analysis. The Scopus database was utilized to retrieve pertinent data related to big data applications in librarianship. The dataset comprised 430 documents, including journal articles, conference papers, book chapters, reviews and books. Through bibliometric analysis, the study examined the effectiveness of different publication types and identified the main topics and themes within the field. Findings The study found that the field of big data in librarianship is growing rapidly, with a significant increase in publications and citations over the past few years. China is the leading country in terms of publication output, followed by the United States of America. The most influential journals in the field are Library Hi Tech and the ACM International Conference Proceeding Series. The top authors in the field are Minami T, Wu J, Fox EA and Giles CL. The most common keywords in the literature are big data, librarianship, data mining, information retrieval, machine learning and webometrics. Originality/value This bibliometric study contributes to the existing body of literature by comprehensively analyzing the latest trends and patterns in big data applications within librarianship. It offers a systematic approach to understanding the state of the field and highlights the unique contributions made by various types of publications. The study’s findings and insights contribute to the originality of this research, providing a foundation for further exploration and advancement in the field of big data in librarianship.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怡然的幻灵完成签到,获得积分10
1秒前
激昂的白凡应助tigger采纳,获得40
1秒前
zzz完成签到 ,获得积分10
3秒前
Ade完成签到,获得积分10
5秒前
fat完成签到,获得积分10
5秒前
嘎嘎嘎完成签到 ,获得积分10
5秒前
6秒前
丘比特应助Jennie采纳,获得10
6秒前
hairgod发布了新的文献求助10
7秒前
热心市民小红花应助成璨采纳,获得30
10秒前
10秒前
Schwann翠星石完成签到,获得积分10
11秒前
12秒前
WQQ完成签到,获得积分10
12秒前
嗯哼应助赵小漂亮采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
Akim应助科研通管家采纳,获得10
21秒前
FashionBoy应助科研通管家采纳,获得10
21秒前
852应助科研通管家采纳,获得10
21秒前
ding应助科研通管家采纳,获得10
21秒前
cctv18应助科研通管家采纳,获得10
21秒前
ding应助科研通管家采纳,获得10
21秒前
顾矜应助科研通管家采纳,获得10
21秒前
tzp发布了新的文献求助10
23秒前
24秒前
hairgod完成签到,获得积分10
25秒前
卷毛发布了新的文献求助30
28秒前
大模型应助苗条的小肥羊采纳,获得10
29秒前
31秒前
秀xiu发布了新的文献求助10
33秒前
40秒前
bkagyin应助尽我所能采纳,获得10
40秒前
澡雪完成签到,获得积分10
47秒前
wangfugui完成签到,获得积分10
47秒前
大个应助青瓜大王采纳,获得10
49秒前
50秒前
51秒前
51秒前
在水一方应助随便采纳,获得10
52秒前
53秒前
高分求助中
Sustainability in ’Tides Chemistry 1500
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Historia de la ciencia jurídica europea 600
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3069575
求助须知:如何正确求助?哪些是违规求助? 2723483
关于积分的说明 7481948
捐赠科研通 2370550
什么是DOI,文献DOI怎么找? 1257057
科研通“疑难数据库(出版商)”最低求助积分说明 609800
版权声明 596861