Exploring the landscape of big data applications in librarianship: a bibliometric analysis of research trends and patterns

文献计量学 大数据 数据科学 图书馆学 计算机科学 万维网 地理 数据挖掘
作者
Md Nurul Islam,Guangwei Hu,Murtaza Ashiq,Shakil Ahmad
出处
期刊:Library Hi Tech [Emerald Publishing Limited]
标识
DOI:10.1108/lht-05-2023-0193
摘要

Purpose This bibliometric study aims to analyze the latest trends and patterns of big data applications in librarianship from 2000 to 2022. By conducting a comprehensive examination of the existing literature, this study aims to provide valuable insights into the emerging field of big data in librarianship and its potential impact on the future of libraries. Design/methodology/approach This study employed a rigorous four-stage process of identification, screening, eligibility and inclusion to filter and select the most relevant documents for analysis. The Scopus database was utilized to retrieve pertinent data related to big data applications in librarianship. The dataset comprised 430 documents, including journal articles, conference papers, book chapters, reviews and books. Through bibliometric analysis, the study examined the effectiveness of different publication types and identified the main topics and themes within the field. Findings The study found that the field of big data in librarianship is growing rapidly, with a significant increase in publications and citations over the past few years. China is the leading country in terms of publication output, followed by the United States of America. The most influential journals in the field are Library Hi Tech and the ACM International Conference Proceeding Series. The top authors in the field are Minami T, Wu J, Fox EA and Giles CL. The most common keywords in the literature are big data, librarianship, data mining, information retrieval, machine learning and webometrics. Originality/value This bibliometric study contributes to the existing body of literature by comprehensively analyzing the latest trends and patterns in big data applications within librarianship. It offers a systematic approach to understanding the state of the field and highlights the unique contributions made by various types of publications. The study’s findings and insights contribute to the originality of this research, providing a foundation for further exploration and advancement in the field of big data in librarianship.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
SYLH应助wfy采纳,获得20
1秒前
萤火微光完成签到,获得积分10
1秒前
1秒前
1秒前
苏横完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
YYQ完成签到,获得积分20
2秒前
shan完成签到,获得积分10
2秒前
3秒前
3秒前
wtvua完成签到,获得积分10
4秒前
ZHAO发布了新的文献求助10
4秒前
苒苒完成签到,获得积分10
4秒前
百里秋发布了新的文献求助10
4秒前
萤火微光发布了新的文献求助10
4秒前
法式千层饼完成签到,获得积分10
5秒前
风中琦完成签到 ,获得积分10
5秒前
kwk完成签到,获得积分10
5秒前
6秒前
LiAlan发布了新的文献求助10
6秒前
6秒前
YYQ发布了新的文献求助10
6秒前
方旋发布了新的文献求助10
6秒前
6秒前
asipilin完成签到,获得积分10
6秒前
还单身的香菇完成签到,获得积分10
6秒前
124发布了新的文献求助10
7秒前
7秒前
shan发布了新的文献求助10
7秒前
魔幻幻桃完成签到,获得积分20
8秒前
lelelele完成签到,获得积分10
8秒前
9秒前
LW完成签到,获得积分10
9秒前
9秒前
缘来是梦完成签到,获得积分10
9秒前
周胎胎完成签到,获得积分10
9秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009834
求助须知:如何正确求助?哪些是违规求助? 3549753
关于积分的说明 11303647
捐赠科研通 3284309
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886367
科研通“疑难数据库(出版商)”最低求助积分说明 811406