Mesoporous cobalt-manganese layered double hydroxides promote the activation of calcium sulfite for degradation and detoxification of metronidazole

层状双氢氧化物 化学 降级(电信) 介孔材料 亚硫酸盐 过硫酸盐 无机化学 激进的 催化作用 有机化学 计算机科学 电信
作者
Akbar Mamatali,Dedong Wu,Haijiao Xie,Pengfei Xiao
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
卷期号:666: 512-528 被引量:4
标识
DOI:10.1016/j.jcis.2024.04.056
摘要

Metronidazole (MNZ), a commonly used antibiotic, poses risks to water bodies and human health due to its potential carcinogenic, mutagenic, and genotoxic effects. In this study, mesoporous cobalt-manganese layered double hydroxides (CoxMny-LDH) with abundant oxygen vacancies (Ov) were successfully synthesized using the co-precipitation method and used to activate calcium sulfite (CaSO3) with slight soluble in water for MNZ degradation. The characterization results revealed that Co2Mn-LDH had higher specific areas and exhibited good crystallinity. Co2Mn-LDH/CaSO3 exhibited the best catalytic performance under optimal conditions, achieving a remarkable MNZ degradation efficiency of up to 98.1 % in only 8 min. Quenching experiments and electron paramagnetic resonance (EPR) tests showed that SO4•− and 1O2 played pivotal roles in the MNZ degradation process by activated CaSO3, while the redox cycles of Co2+/Co3+ and Mn3+/Mn4+ on the catalyst surface accelerated electron transfer, promoting radical generation. Three MNZ degradation routes were put forward based on the density functional theory (DFT) and liquid chromatography-mass spectrometer (LC-MS) analysis. Meanwhile, the toxicity analysis result demonstrated that the toxicity of intermediates post-catalytic reaction was decreased. Furthermore, the Co2Mn-LDH/CaSO3 system displayed excellent stability, reusability, and anti-interference capability, and achieved a comparably high removal efficiency across various organic pollutant water bodies. This study provides valuable insights into the development and optimization of effective heterogeneous catalysts for treating antibiotic-contaminated wastewater.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
北极星完成签到,获得积分10
2秒前
柚子完成签到 ,获得积分10
3秒前
yuzhou完成签到 ,获得积分10
3秒前
Maestro_S应助宁听白采纳,获得20
3秒前
feb完成签到,获得积分10
5秒前
Nitric_Oxide应助weslywang采纳,获得10
5秒前
6秒前
7秒前
orixero应助暴躁的信封采纳,获得10
8秒前
lisa发布了新的文献求助10
9秒前
万能图书馆应助赞zan采纳,获得10
10秒前
11秒前
11秒前
思源应助miku1采纳,获得10
12秒前
明亮灭绝发布了新的文献求助10
12秒前
小熊完成签到,获得积分10
12秒前
小飞发布了新的文献求助10
14秒前
14秒前
研友_nvkeBZ完成签到,获得积分10
15秒前
zzzkyt完成签到,获得积分10
16秒前
百宝完成签到,获得积分10
16秒前
17秒前
18秒前
王提完成签到,获得积分10
19秒前
19秒前
明亮灭绝完成签到,获得积分10
19秒前
胖胖玩啊玩完成签到 ,获得积分10
20秒前
22秒前
宁听白完成签到,获得积分10
22秒前
cjjwei完成签到 ,获得积分10
22秒前
Miki完成签到,获得积分10
23秒前
miku1发布了新的文献求助10
24秒前
感动尔柳发布了新的文献求助10
25秒前
所所应助WW采纳,获得10
25秒前
皮皮完成签到 ,获得积分10
26秒前
鲁滨逊发布了新的文献求助10
27秒前
28秒前
断水流小师弟完成签到 ,获得积分10
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134881
求助须知:如何正确求助?哪些是违规求助? 2785770
关于积分的说明 7774093
捐赠科研通 2441601
什么是DOI,文献DOI怎么找? 1298038
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825