Mesoporous cobalt-manganese layered double hydroxides promote the activation of calcium sulfite for degradation and detoxification of metronidazole

层状双氢氧化物 化学 降级(电信) 介孔材料 亚硫酸盐 过硫酸盐 无机化学 激进的 催化作用 有机化学 计算机科学 电信
作者
Akbar Mamatali,Dedong Wu,Haijiao Xie,Pengfei Xiao
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
卷期号:666: 512-528 被引量:12
标识
DOI:10.1016/j.jcis.2024.04.056
摘要

Metronidazole (MNZ), a commonly used antibiotic, poses risks to water bodies and human health due to its potential carcinogenic, mutagenic, and genotoxic effects. In this study, mesoporous cobalt-manganese layered double hydroxides (CoxMny-LDH) with abundant oxygen vacancies (Ov) were successfully synthesized using the co-precipitation method and used to activate calcium sulfite (CaSO3) with slight soluble in water for MNZ degradation. The characterization results revealed that Co2Mn-LDH had higher specific areas and exhibited good crystallinity. Co2Mn-LDH/CaSO3 exhibited the best catalytic performance under optimal conditions, achieving a remarkable MNZ degradation efficiency of up to 98.1 % in only 8 min. Quenching experiments and electron paramagnetic resonance (EPR) tests showed that SO4•− and 1O2 played pivotal roles in the MNZ degradation process by activated CaSO3, while the redox cycles of Co2+/Co3+ and Mn3+/Mn4+ on the catalyst surface accelerated electron transfer, promoting radical generation. Three MNZ degradation routes were put forward based on the density functional theory (DFT) and liquid chromatography-mass spectrometer (LC-MS) analysis. Meanwhile, the toxicity analysis result demonstrated that the toxicity of intermediates post-catalytic reaction was decreased. Furthermore, the Co2Mn-LDH/CaSO3 system displayed excellent stability, reusability, and anti-interference capability, and achieved a comparably high removal efficiency across various organic pollutant water bodies. This study provides valuable insights into the development and optimization of effective heterogeneous catalysts for treating antibiotic-contaminated wastewater.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
walu发布了新的文献求助30
刚刚
刚刚
langkanpu发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
devil发布了新的文献求助50
1秒前
1秒前
1秒前
jl发布了新的文献求助10
1秒前
2秒前
梁皓然发布了新的文献求助10
2秒前
甘振豪发布了新的文献求助10
2秒前
wuuToiiin完成签到,获得积分10
3秒前
杨一乐发布了新的文献求助50
3秒前
咖啡酸醋冰完成签到,获得积分10
3秒前
幽默的方盒完成签到,获得积分10
3秒前
3秒前
爆米花应助灵巧的山水采纳,获得10
4秒前
4秒前
iW发布了新的文献求助10
5秒前
lucky发布了新的文献求助10
5秒前
朴素访琴完成签到 ,获得积分10
5秒前
5秒前
longyuyan完成签到,获得积分10
6秒前
6秒前
6秒前
Rec完成签到 ,获得积分10
6秒前
虎啊虎啊发布了新的文献求助10
7秒前
周婷发布了新的文献求助10
7秒前
夜神月发布了新的文献求助10
7秒前
7秒前
7秒前
HCL发布了新的文献求助10
7秒前
8秒前
wushuwen完成签到,获得积分10
8秒前
8秒前
langkanpu完成签到,获得积分10
8秒前
9秒前
9秒前
大一京城完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608436
求助须知:如何正确求助?哪些是违规求助? 4693073
关于积分的说明 14876620
捐赠科研通 4717595
什么是DOI,文献DOI怎么找? 2544222
邀请新用户注册赠送积分活动 1509305
关于科研通互助平台的介绍 1472836