Machine learning-based prediction of pathological responses and prognosis after neoadjuvant chemotherapy for non-small cell lung cancer: A retrospective study

医学 肺癌 接收机工作特性 回顾性队列研究 肿瘤科 化疗 新辅助治疗 内科学 癌症 乳腺癌
作者
Zhaojuan Jiang,Q. Li,Jinqiu Ruan,Yanli Li,Dafu Zhang,Yongzhou Xu,Yuting Liao,Xin Zhang,Depei Gao,Zhenhui Li
出处
期刊:Clinical Lung Cancer [Elsevier]
卷期号:25 (5): 468-478.e3
标识
DOI:10.1016/j.cllc.2024.04.006
摘要

Background Neoadjuvant chemotherapy has variable efficacy in patients with non-small cell lung cancer (NSCLC), yet reliable noninvasive predictive markers are lacking. This study aimed to develop a radiomics model predicting pathological complete response(pCR) and post–neoadjuvant chemotherapy survival in NSCLC. Methods Retrospective data collection involved 130 patients with NSCLC who underwent neoadjuvant chemotherapy and surgery. Patients were randomly divided into training and independent testing sets. Nine radiomics features from pre-chemotherapy CT images were extracted from intratumoral and peritumoral regions. An auto-encoder (AE) model was constructed, and it's performance was evaluated. X-tile software classified patients into high and low-risk groups based on their predicted probabilities. survival of patients in different risk groups and the role of postoperative adjuvant chemotherapy were examined. Results The model demonstrated area under the receiver operating characteristic (ROC) curve (AUC) of 0.874 (training set) and 0.876 (testing set). The higher the AUC value, the better the model performance. Calibration curve and decision curve analysis(DCA) indicated excellent model calibration (Hosmer-Lemeshow test, P = 0.763, the higher the P-value, the better the model fit) and potential clinical applicability. Survival analysis revealed significant differences in overall survival (OS, P = 0.011) and disease-free survival (DFS, P = 0.017) between different risk groups. Adjuvant chemotherapy significantly improved survival in the low-risk group (P = 0.041) but not high-risk group (P = 0.56). Conclusions This study represents the first successful prediction of pCR achievement after neoadjuvant chemotherapy for NSCLC, as well as the patients' survival, utilizing intratumoral and peritumoral radiomics features. Micro Abstract We constructed a radiomics model predicting pathological complete response and survival after neoadjuvant chemotherapy in NSCLC, utilizing intratumoral and peritumoral radiomics features of 130 people. And the model demonstrated the AUCs in training set and testing set are 0.874 and 0.876. So, this study may provide new ideas for decision-making about individualized treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助一念之间采纳,获得10
刚刚
红红酱发布了新的文献求助10
刚刚
富贵完成签到,获得积分10
1秒前
Sarah悦完成签到,获得积分10
1秒前
良辰应助potato采纳,获得10
3秒前
3秒前
4秒前
oneyyy完成签到 ,获得积分10
5秒前
采蘑菇的小姑凉完成签到,获得积分10
5秒前
打打应助欢呼的忘幽采纳,获得10
5秒前
正直的沛凝完成签到,获得积分10
6秒前
舒适逊完成签到 ,获得积分10
6秒前
CodeCraft应助淡然的曼岚采纳,获得10
6秒前
深情安青应助fjh采纳,获得10
7秒前
7秒前
醉熏的伊发布了新的文献求助10
7秒前
8秒前
菜菜完成签到,获得积分10
8秒前
大模型应助Andywong采纳,获得10
9秒前
Henry应助王汐采纳,获得200
10秒前
10秒前
梵星给懵懂的梦秋的求助进行了留言
10秒前
李灿完成签到,获得积分20
10秒前
11秒前
tonghau895完成签到 ,获得积分10
11秒前
zhihua完成签到,获得积分10
12秒前
浊醪自有妙理应助jreey2744采纳,获得10
12秒前
菜菜发布了新的文献求助20
13秒前
风中的丝袜完成签到,获得积分10
13秒前
kiwi完成签到 ,获得积分10
14秒前
百里如雪发布了新的文献求助10
15秒前
15秒前
czh完成签到 ,获得积分20
15秒前
一念之间发布了新的文献求助10
16秒前
霜之哀伤完成签到,获得积分10
16秒前
zhihua发布了新的文献求助10
17秒前
evan发布了新的文献求助30
17秒前
fwt完成签到,获得积分10
19秒前
19秒前
一念之间完成签到,获得积分10
20秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152088
求助须知:如何正确求助?哪些是违规求助? 2803383
关于积分的说明 7853471
捐赠科研通 2460824
什么是DOI,文献DOI怎么找? 1310064
科研通“疑难数据库(出版商)”最低求助积分说明 629107
版权声明 601765