Scope-Free Global Multi-Condition-Aware Industrial Missing Data Imputation Framework via Diffusion Transformer

计算机科学 插补(统计学) 数据挖掘 数据建模 缺少数据 范围(计算机科学) 数据库 机器学习 程序设计语言
作者
Diju Liu,Yalin Wang,Chenliang Liu,Xiaofeng Yuan,Kai Wang,Chunhua Yang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:36 (11): 6977-6988 被引量:1
标识
DOI:10.1109/tkde.2024.3392897
摘要

Missing data is a common phenomenon in the industrial field. The recovery of missing data is crucial to enhance the reliability of subsequent data-driven monitoring and control of industrial processes. Most existing methods are limited by the confined scope of feature extraction, which makes it impossible to rely on global information to impute missing data. In addition, they usually assume that industrial data is a uniform distribution across all working conditions, ignoring the differences in data evolution patterns across different conditions. To address these issues, this paper proposes an innovative scope-free global multi-condition-aware imputation framework based on diffusion transformer (SGMCAI-DiT). First, it extends the diffusion model by introducing conditional probability to capture the condition distribution of the entire data. Then, a noise prediction model is designed based on a novel double-weighted attention mechanism (DW-SA) to broaden the horizons of feature extraction. By discerning the inter-conditional interactions and the intra-conditional local information, the missing data imputation performance can be improved. Finally, the effectiveness and suitability of the proposed SGMCAI-DiT are verified on four real datasets sourced from industrial processes and two public non-industrial datasets. Extensive experimental results demonstrate that the proposed method outperforms several state-of-the-art methods in different missing data scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hj发布了新的文献求助10
1秒前
1秒前
1秒前
科研通AI5应助zwtaihua1025采纳,获得10
2秒前
良辰应助科研通管家采纳,获得10
2秒前
中和皇极应助科研通管家采纳,获得20
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得30
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得30
2秒前
烟花应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
爱静静应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得30
3秒前
爱静静应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
NexusExplorer应助朴素的书琴采纳,获得10
4秒前
中中发布了新的文献求助10
5秒前
green发布了新的文献求助10
5秒前
熊某某完成签到,获得积分10
6秒前
7秒前
miko完成签到,获得积分10
7秒前
威武思烟发布了新的文献求助10
9秒前
9秒前
慕青应助黄多多采纳,获得10
10秒前
搜集达人应助舒适的太君采纳,获得10
11秒前
赵辉完成签到,获得积分10
11秒前
11秒前
K513693050发布了新的文献求助10
12秒前
12秒前
打打应助ccc采纳,获得10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555252
求助须知:如何正确求助?哪些是违规求助? 3130871
关于积分的说明 9389097
捐赠科研通 2830384
什么是DOI,文献DOI怎么找? 1555991
邀请新用户注册赠送积分活动 726370
科研通“疑难数据库(出版商)”最低求助积分说明 715737