Semi-supervised method for visual detection of automotive paint defects

交叉口(航空) 汽车工业 过程(计算) 人工智能 联营 任务(项目管理) 计算机科学 目视检查 棱锥(几何) 探测器 计算机视觉 模式识别(心理学) 机器学习 工程类 数学 航空航天工程 电信 几何学 系统工程 操作系统
作者
Weiwei Jiang,Xingjian Chen,Y G He,Xiuxian Wang,Songyu Hu,Minhua Lu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (8): 085902-085902 被引量:2
标识
DOI:10.1088/1361-6501/ad440e
摘要

Abstract Automotive paint defect detection plays a crucial role in the automotive production process. Current research on visual defect detection methods is mainly based on supervised learning, which requires a large number of labeled image samples for model training. The labeling work is not only time consuming but also expensive, seriously hindering the testing and application of these models in practice. To address this issue, this study proposes a new method for automotive paint defect detection based on a semi-supervised training strategy. First, a semi-supervised automotive paint defect detection framework, which can use labeled and unlabeled samples to reduce the cost of data labeling effectively, is presented. Then, a spatial pyramid pooling fast external attention module that introduces an external attention mechanism is proposed to improve the traditional YOLOv7 network structure, called YOLOv7-EA, to obtain good detection performance. This network acts as a detector to generate high-quality pseudo labels for the unlabeled samples, providing additional data to train the model; meanwhile, it performs the final detection task. Lastly, a Wise-intersection over union loss function that considers the quality of the anchor box is introduced to reduce the interference of low-quality samples and improve the convergence speed and detection accuracy of the model. Using this method, we can accomplish the task of automotive paint defect detection with a small number of labeled image samples. Experimental results on the automotive paint defect dataset show that mean average precision (mAp)@.5, mAp@.75, and mAp@.5:.95 are superior to other methods under the condition of 10% and 15% labeled data, achieving good defect detection performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ohhruby完成签到,获得积分10
刚刚
酷波er应助坐亭下采纳,获得10
1秒前
2秒前
2秒前
vffg发布了新的文献求助10
2秒前
秋夏发布了新的文献求助20
3秒前
xinxinbaby发布了新的文献求助10
5秒前
薅住科研的头发完成签到,获得积分10
6秒前
Joanna发布了新的文献求助10
8秒前
脑洞疼应助Fengliguantou采纳,获得10
9秒前
10秒前
酷波er应助科多兽骑士采纳,获得10
11秒前
小马甲应助xiaoming采纳,获得10
11秒前
12秒前
达达完成签到,获得积分10
12秒前
黑猫警长完成签到,获得积分10
13秒前
zhou发布了新的文献求助30
13秒前
13秒前
Zoki完成签到,获得积分10
14秒前
cigar发布了新的文献求助10
14秒前
ting发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
舍曲林完成签到,获得积分10
16秒前
傻傻的凤灵应助nkuwangkai采纳,获得10
16秒前
张雷举报小李求助涉嫌违规
16秒前
ShenLi应助xinxinbaby采纳,获得10
17秒前
17秒前
17秒前
坐亭下发布了新的文献求助10
18秒前
19秒前
麒麟发布了新的文献求助20
19秒前
20秒前
Archy发布了新的文献求助10
20秒前
20秒前
少少少完成签到,获得积分20
21秒前
EED发布了新的文献求助10
22秒前
cigar完成签到,获得积分10
22秒前
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992518
求助须知:如何正确求助?哪些是违规求助? 3533486
关于积分的说明 11262567
捐赠科研通 3273054
什么是DOI,文献DOI怎么找? 1805922
邀请新用户注册赠送积分活动 882858
科研通“疑难数据库(出版商)”最低求助积分说明 809496