Semi-supervised method for visual detection of automotive paint defects

交叉口(航空) 汽车工业 过程(计算) 人工智能 联营 任务(项目管理) 计算机科学 目视检查 棱锥(几何) 探测器 计算机视觉 模式识别(心理学) 机器学习 工程类 数学 航空航天工程 电信 几何学 系统工程 操作系统
作者
Weiwei Jiang,Xingjian Chen,Y G He,Xiuxian Wang,Songyu Hu,Minhua Lu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (8): 085902-085902 被引量:2
标识
DOI:10.1088/1361-6501/ad440e
摘要

Abstract Automotive paint defect detection plays a crucial role in the automotive production process. Current research on visual defect detection methods is mainly based on supervised learning, which requires a large number of labeled image samples for model training. The labeling work is not only time consuming but also expensive, seriously hindering the testing and application of these models in practice. To address this issue, this study proposes a new method for automotive paint defect detection based on a semi-supervised training strategy. First, a semi-supervised automotive paint defect detection framework, which can use labeled and unlabeled samples to reduce the cost of data labeling effectively, is presented. Then, a spatial pyramid pooling fast external attention module that introduces an external attention mechanism is proposed to improve the traditional YOLOv7 network structure, called YOLOv7-EA, to obtain good detection performance. This network acts as a detector to generate high-quality pseudo labels for the unlabeled samples, providing additional data to train the model; meanwhile, it performs the final detection task. Lastly, a Wise-intersection over union loss function that considers the quality of the anchor box is introduced to reduce the interference of low-quality samples and improve the convergence speed and detection accuracy of the model. Using this method, we can accomplish the task of automotive paint defect detection with a small number of labeled image samples. Experimental results on the automotive paint defect dataset show that mean average precision (mAp)@.5, mAp@.75, and mAp@.5:.95 are superior to other methods under the condition of 10% and 15% labeled data, achieving good defect detection performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wls完成签到 ,获得积分10
刚刚
刚刚
刚刚
刚刚
悠悠发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
嘉心糖应助womodou采纳,获得20
3秒前
3秒前
LKT发布了新的文献求助10
3秒前
4秒前
elijah发布了新的文献求助10
4秒前
鳗鱼盼夏发布了新的文献求助10
4秒前
4秒前
Jinyi发布了新的文献求助10
5秒前
宁学者发布了新的文献求助10
6秒前
dl发布了新的文献求助10
6秒前
大个应助勤奋的一手采纳,获得10
6秒前
英俊的铭应助詹姆斯采纳,获得10
6秒前
搜集达人应助66采纳,获得10
7秒前
7秒前
8秒前
黄金灼完成签到,获得积分10
9秒前
9秒前
weerfi发布了新的文献求助30
9秒前
黎明完成签到,获得积分10
12秒前
小白发布了新的文献求助10
13秒前
YUE发布了新的文献求助20
13秒前
万能图书馆应助TheShy采纳,获得10
14秒前
斯文败类应助榎井采纳,获得10
14秒前
14秒前
Akim应助鳗鱼盼夏采纳,获得10
15秒前
16秒前
weerfi完成签到,获得积分10
18秒前
高大又蓝完成签到,获得积分20
18秒前
19秒前
19秒前
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305763
求助须知:如何正确求助?哪些是违规求助? 2939395
关于积分的说明 8493534
捐赠科研通 2613845
什么是DOI,文献DOI怎么找? 1427668
科研通“疑难数据库(出版商)”最低求助积分说明 663156
邀请新用户注册赠送积分活动 647945