Semi-supervised method for visual detection of automotive paint defects

交叉口(航空) 汽车工业 过程(计算) 人工智能 联营 任务(项目管理) 计算机科学 目视检查 棱锥(几何) 探测器 计算机视觉 模式识别(心理学) 机器学习 工程类 数学 航空航天工程 电信 几何学 系统工程 操作系统
作者
Weiwei Jiang,Xingjian Chen,Y G He,Xiuxian Wang,Songyu Hu,Minhua Lu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (8): 085902-085902 被引量:2
标识
DOI:10.1088/1361-6501/ad440e
摘要

Abstract Automotive paint defect detection plays a crucial role in the automotive production process. Current research on visual defect detection methods is mainly based on supervised learning, which requires a large number of labeled image samples for model training. The labeling work is not only time consuming but also expensive, seriously hindering the testing and application of these models in practice. To address this issue, this study proposes a new method for automotive paint defect detection based on a semi-supervised training strategy. First, a semi-supervised automotive paint defect detection framework, which can use labeled and unlabeled samples to reduce the cost of data labeling effectively, is presented. Then, a spatial pyramid pooling fast external attention module that introduces an external attention mechanism is proposed to improve the traditional YOLOv7 network structure, called YOLOv7-EA, to obtain good detection performance. This network acts as a detector to generate high-quality pseudo labels for the unlabeled samples, providing additional data to train the model; meanwhile, it performs the final detection task. Lastly, a Wise-intersection over union loss function that considers the quality of the anchor box is introduced to reduce the interference of low-quality samples and improve the convergence speed and detection accuracy of the model. Using this method, we can accomplish the task of automotive paint defect detection with a small number of labeled image samples. Experimental results on the automotive paint defect dataset show that mean average precision (mAp)@.5, mAp@.75, and mAp@.5:.95 are superior to other methods under the condition of 10% and 15% labeled data, achieving good defect detection performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
HanyuJing发布了新的文献求助10
刚刚
2秒前
2秒前
昏睡的一斩应助11采纳,获得10
2秒前
落后的乌龟完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
无奈曼云完成签到,获得积分10
3秒前
深情安青应助科研顺路采纳,获得10
3秒前
星辰大海应助张开心采纳,获得10
4秒前
星辰大海应助chigga采纳,获得10
5秒前
pancake发布了新的文献求助100
6秒前
韵诗发布了新的文献求助10
6秒前
Quin完成签到,获得积分10
6秒前
Bambookiller完成签到,获得积分10
7秒前
火星上的海亦完成签到,获得积分10
7秒前
张来完成签到 ,获得积分10
7秒前
8秒前
8秒前
lynn发布了新的文献求助10
8秒前
8秒前
9秒前
无花果应助DUDUDUDU采纳,获得100
9秒前
9秒前
桃掉烦恼完成签到,获得积分10
10秒前
爱吃泡芙完成签到,获得积分10
10秒前
PAPA发布了新的文献求助10
11秒前
胜作一书生完成签到,获得积分10
12秒前
12秒前
思源应助废柴采纳,获得10
12秒前
12秒前
lapin完成签到,获得积分10
13秒前
Hmzek完成签到,获得积分10
13秒前
英姑应助卫生五蚕体采纳,获得10
13秒前
有魅力的乐珍完成签到 ,获得积分10
14秒前
Kevin Li完成签到,获得积分10
14秒前
15秒前
1701发布了新的文献求助10
15秒前
啦啦啦啦啦完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5783763
求助须知:如何正确求助?哪些是违规求助? 5678943
关于积分的说明 15462183
捐赠科研通 4913180
什么是DOI,文献DOI怎么找? 2644538
邀请新用户注册赠送积分活动 1592293
关于科研通互助平台的介绍 1546946