A Novel Approach to Incomplete Multimodal Learning for Remote Sensing Data Fusion

计算机科学 传感器融合 遥感 融合 人工智能 地质学 语言学 哲学
作者
Yuxing Chen,Maofan Zhao,Lorenzo Bruzzone
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:2
标识
DOI:10.1109/tgrs.2024.3387837
摘要

The mechanism of connecting multimodal signals through self-attention operation is a key factor in the success of multimodal Transformer networks in remote sensing data fusion tasks. However, traditional approaches assume access to all modalities during both training and inference, which can lead to severe degradation when dealing with modal-incomplete inputs in downstream applications. To address this limitation, we propose a novel approach to incomplete multimodal learning in the context of remote sensing data fusion and the multimodal Transformer. This approach can be used in both supervised and self-supervised pre-training paradigms. It leverages the additional learned fusion tokens in combination with modality attention and masked self-attention mechanisms to collect multimodal signals in a multimodal Transformer. The proposed approach employs reconstruction and contrastive loss to facilitate fusion in pre-training, while allowing for random modality combinations as inputs in network training. Experimental results show that the proposed method delivers state-of-the-art performance on two multimodal datasets for tasks such as building instance / semantic segmentation and land-cover mapping when dealing with incomplete inputs during inference.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wos完成签到,获得积分10
刚刚
奋斗的大米完成签到,获得积分10
刚刚
刚刚
Upupuu完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
怕黑南琴发布了新的文献求助10
2秒前
桐桐应助YXYWZMSZ采纳,获得10
2秒前
小芒果完成签到,获得积分10
3秒前
杨玄发布了新的文献求助10
3秒前
4秒前
无花果应助追寻啤酒采纳,获得10
4秒前
5秒前
gxpjzbg发布了新的文献求助30
5秒前
卿君完成签到,获得积分10
5秒前
机灵海之完成签到 ,获得积分10
5秒前
墨与白发布了新的文献求助10
5秒前
何事惊慌完成签到,获得积分10
6秒前
6秒前
小张不慌完成签到,获得积分10
6秒前
Tammy完成签到 ,获得积分10
6秒前
6秒前
FashionBoy应助天真的皓轩采纳,获得10
6秒前
HXuer完成签到,获得积分10
7秒前
REBACK完成签到,获得积分10
7秒前
虚心夜山完成签到 ,获得积分10
7秒前
8秒前
8秒前
8秒前
123完成签到,获得积分10
8秒前
聪子完成签到,获得积分10
8秒前
8秒前
安静的凡松完成签到,获得积分10
9秒前
juju发布了新的文献求助50
9秒前
9秒前
LawShu完成签到 ,获得积分10
9秒前
土木科研小灵通完成签到 ,获得积分10
9秒前
marco完成签到,获得积分10
10秒前
渣渣完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
Interest Rate Modeling. Volume 1: Foundations and Vanilla Models 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3539453
求助须知:如何正确求助?哪些是违规求助? 3116994
关于积分的说明 9328623
捐赠科研通 2814841
什么是DOI,文献DOI怎么找? 1547281
邀请新用户注册赠送积分活动 720830
科研通“疑难数据库(出版商)”最低求助积分说明 712318