Development and validation of machine learning models to predict postoperative infarction in moyamoya disease

医学 接收机工作特性 烟雾病 队列 血运重建 机器学习 人工智能 随机森林 梯度升压 支持向量机 围手术期 梗塞 外科 内科学 计算机科学 心肌梗塞
作者
Yutaro Fuse,Kazuki Ishii,Fumiaki Kanamori,Shintaro Oyama,Takahiro Imaizumi,Yoshio Araki,Kinya Yokoyama,Syuntaro Takasu,Yukio Seki,Ryuta Saito
出处
期刊:Journal of Neurosurgery [Journal of Neurosurgery Publishing Group]
卷期号:: 1-9 被引量:1
标识
DOI:10.3171/2024.1.jns232173
摘要

OBJECTIVE Cerebral infarction is a common complication in patients undergoing revascularization surgery for moyamoya disease (MMD). Although previous statistical evaluations have identified several risk factors for postoperative brain ischemia, the ability to predict its occurrence based on these limited predictors remains inadequately explored. This study aimed to assess the feasibility of machine learning algorithms for predicting cerebral infarction after revascularization surgery in patients with MMD. METHODS This retrospective study was conducted across two centers and harnessed data from 512 patients with MMD who had undergone revascularization surgery. The patient cohort was partitioned into internal and external datasets. Using perioperative clinical data from the internal cohort, three distinct machine learning algorithms—namely the support vector machine, random forest, and light gradient-boosting machine models—were trained and cross-validated to predict the occurrence of postoperative cerebral infarction. Predictive performance validity was subsequently assessed using an external dataset. Shapley additive explanations (SHAP) analysis was conducted to augment the prediction model’s transparency and to quantify the impact of each input variable on shaping both the aggregate and individual patient predictions. RESULTS In the cohort of 512 patients, 33 (6.4%) experienced postrevascularization cerebral infarction. The cross-validation outcomes revealed that, among the three models, the support vector machine model achieved the largest area under the receiver operating characteristic curve (ROC-AUC) at mean ± SD 0.785 ± 0.052. Notably, during external validation, the light gradient-boosting machine model exhibited the highest accuracy at 0.903 and the largest ROC-AUC at 0.710. The top-performing prediction model utilized five input variables: postoperative serum gamma-glutamyl transpeptidase value, positive posterior cerebral artery (PCA) involvement on preoperative MRA, infarction as the rationale for surgery, presence of an infarction scar on preoperative MRI, and preoperative modified Rankin Scale score. Furthermore, the SHAP analysis identified presence of PCA involvement, infarction as the rationale for surgery, and presence of an infarction scar on preoperative MRI as positive influences on postoperative cerebral infarction. CONCLUSIONS This study indicates the usefulness of employing machine learning techniques with routine perioperative data to predict the occurrence of cerebral infarction after revascularization procedures in patients with MMD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助海棠依旧采纳,获得30
1秒前
11111发布了新的文献求助10
2秒前
略略略完成签到,获得积分10
2秒前
2秒前
dddd完成签到,获得积分10
3秒前
教生物的杨教授完成签到,获得积分10
3秒前
脚啊啊啊完成签到,获得积分10
3秒前
Yey完成签到 ,获得积分10
4秒前
wang发布了新的文献求助10
4秒前
虚心的寒梦完成签到,获得积分10
4秒前
ncjdoi发布了新的文献求助10
5秒前
伯赏雁蓉完成签到,获得积分10
5秒前
脑洞疼应助六沉采纳,获得10
6秒前
背后莫言完成签到,获得积分20
7秒前
一_完成签到,获得积分10
7秒前
莫莫莫莫几完成签到,获得积分10
8秒前
感动语蝶发布了新的文献求助30
8秒前
乐乐乐乐乐乐应助玙凡采纳,获得10
11秒前
12秒前
潇洒的青丝完成签到,获得积分10
13秒前
13秒前
顾矜应助Chem采纳,获得10
13秒前
小巧曲奇完成签到,获得积分10
13秒前
淡然乌完成签到,获得积分10
14秒前
学术狗发布了新的文献求助10
14秒前
15秒前
我是哑巴完成签到,获得积分10
15秒前
16秒前
海棠依旧发布了新的文献求助30
16秒前
16秒前
17秒前
17秒前
哈儿的跟班完成签到,获得积分10
18秒前
我是哑巴发布了新的文献求助10
18秒前
18秒前
jing发布了新的文献求助10
18秒前
隐形曼青应助Mzhao采纳,获得10
19秒前
Zy完成签到,获得积分20
19秒前
yc发布了新的文献求助10
19秒前
小王同学完成签到,获得积分10
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135273
求助须知:如何正确求助?哪些是违规求助? 2786262
关于积分的说明 7776475
捐赠科研通 2442202
什么是DOI,文献DOI怎么找? 1298495
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600847