Development and validation of machine learning models to predict postoperative infarction in moyamoya disease

医学 接收机工作特性 烟雾病 队列 血运重建 机器学习 人工智能 随机森林 梯度升压 支持向量机 围手术期 梗塞 外科 内科学 计算机科学 心肌梗塞
作者
Yutaro Fuse,Kazuki Ishii,Fumiaki Kanamori,Shintaro Oyama,Takahiro Imaizumi,Yoshio Araki,Kinya Yokoyama,Syuntaro Takasu,Yukio Seki,Ryuta Saito
出处
期刊:Journal of Neurosurgery [Journal of Neurosurgery Publishing Group]
卷期号:141 (4): 927-935 被引量:4
标识
DOI:10.3171/2024.1.jns232173
摘要

OBJECTIVE Cerebral infarction is a common complication in patients undergoing revascularization surgery for moyamoya disease (MMD). Although previous statistical evaluations have identified several risk factors for postoperative brain ischemia, the ability to predict its occurrence based on these limited predictors remains inadequately explored. This study aimed to assess the feasibility of machine learning algorithms for predicting cerebral infarction after revascularization surgery in patients with MMD. METHODS This retrospective study was conducted across two centers and harnessed data from 512 patients with MMD who had undergone revascularization surgery. The patient cohort was partitioned into internal and external datasets. Using perioperative clinical data from the internal cohort, three distinct machine learning algorithms—namely the support vector machine, random forest, and light gradient-boosting machine models—were trained and cross-validated to predict the occurrence of postoperative cerebral infarction. Predictive performance validity was subsequently assessed using an external dataset. Shapley additive explanations (SHAP) analysis was conducted to augment the prediction model’s transparency and to quantify the impact of each input variable on shaping both the aggregate and individual patient predictions. RESULTS In the cohort of 512 patients, 33 (6.4%) experienced postrevascularization cerebral infarction. The cross-validation outcomes revealed that, among the three models, the support vector machine model achieved the largest area under the receiver operating characteristic curve (ROC-AUC) at mean ± SD 0.785 ± 0.052. Notably, during external validation, the light gradient-boosting machine model exhibited the highest accuracy at 0.903 and the largest ROC-AUC at 0.710. The top-performing prediction model utilized five input variables: postoperative serum gamma-glutamyl transpeptidase value, positive posterior cerebral artery (PCA) involvement on preoperative MRA, infarction as the rationale for surgery, presence of an infarction scar on preoperative MRI, and preoperative modified Rankin Scale score. Furthermore, the SHAP analysis identified presence of PCA involvement, infarction as the rationale for surgery, and presence of an infarction scar on preoperative MRI as positive influences on postoperative cerebral infarction. CONCLUSIONS This study indicates the usefulness of employing machine learning techniques with routine perioperative data to predict the occurrence of cerebral infarction after revascularization procedures in patients with MMD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
点凌蝶完成签到,获得积分10
1秒前
丘比特应助朴素的松采纳,获得10
3秒前
inter发布了新的文献求助10
3秒前
9秒前
9秒前
星辰大海应助Wqian采纳,获得10
12秒前
12秒前
16秒前
24秒前
25秒前
科目三应助朴素的松采纳,获得10
26秒前
Jodie发布了新的文献求助10
29秒前
29秒前
Heinrich完成签到,获得积分10
30秒前
Lucas应助inter采纳,获得10
34秒前
无极微光应助科研通管家采纳,获得20
37秒前
Orange应助科研通管家采纳,获得10
37秒前
Verity应助科研通管家采纳,获得10
37秒前
37秒前
丘比特应助科研通管家采纳,获得10
37秒前
37秒前
苏新天完成签到 ,获得积分10
37秒前
搜集达人应助科研通管家采纳,获得10
37秒前
Liangang应助科研通管家采纳,获得10
37秒前
37秒前
搜集达人应助科研通管家采纳,获得10
37秒前
huanger应助科研通管家采纳,获得10
37秒前
桐桐应助科研通管家采纳,获得10
38秒前
斯文败类应助科研通管家采纳,获得10
38秒前
小新应助科研通管家采纳,获得10
38秒前
香蕉觅云应助科研通管家采纳,获得10
38秒前
科研通AI6应助科研通管家采纳,获得10
38秒前
斯文败类应助科研通管家采纳,获得10
38秒前
一叶知秋应助科研通管家采纳,获得10
38秒前
38秒前
38秒前
40秒前
跳跃的翼完成签到,获得积分10
43秒前
健忘可愁完成签到,获得积分10
44秒前
跳跃的翼发布了新的文献求助10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557705
求助须知:如何正确求助?哪些是违规求助? 4642797
关于积分的说明 14669110
捐赠科研通 4584209
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459550