Development and validation of machine learning models to predict postoperative infarction in moyamoya disease

医学 接收机工作特性 烟雾病 队列 血运重建 机器学习 人工智能 随机森林 梯度升压 支持向量机 围手术期 梗塞 外科 内科学 计算机科学 心肌梗塞
作者
Yutaro Fuse,Kazuki Ishii,Fumiaki Kanamori,Shintaro Oyama,Takahiro Imaizumi,Yoshio Araki,Kinya Yokoyama,Syuntaro Takasu,Yukio Seki,Ryuta Saito
出处
期刊:Journal of Neurosurgery [American Association of Neurological Surgeons]
卷期号:141 (4): 927-935 被引量:1
标识
DOI:10.3171/2024.1.jns232173
摘要

OBJECTIVE Cerebral infarction is a common complication in patients undergoing revascularization surgery for moyamoya disease (MMD). Although previous statistical evaluations have identified several risk factors for postoperative brain ischemia, the ability to predict its occurrence based on these limited predictors remains inadequately explored. This study aimed to assess the feasibility of machine learning algorithms for predicting cerebral infarction after revascularization surgery in patients with MMD. METHODS This retrospective study was conducted across two centers and harnessed data from 512 patients with MMD who had undergone revascularization surgery. The patient cohort was partitioned into internal and external datasets. Using perioperative clinical data from the internal cohort, three distinct machine learning algorithms—namely the support vector machine, random forest, and light gradient-boosting machine models—were trained and cross-validated to predict the occurrence of postoperative cerebral infarction. Predictive performance validity was subsequently assessed using an external dataset. Shapley additive explanations (SHAP) analysis was conducted to augment the prediction model’s transparency and to quantify the impact of each input variable on shaping both the aggregate and individual patient predictions. RESULTS In the cohort of 512 patients, 33 (6.4%) experienced postrevascularization cerebral infarction. The cross-validation outcomes revealed that, among the three models, the support vector machine model achieved the largest area under the receiver operating characteristic curve (ROC-AUC) at mean ± SD 0.785 ± 0.052. Notably, during external validation, the light gradient-boosting machine model exhibited the highest accuracy at 0.903 and the largest ROC-AUC at 0.710. The top-performing prediction model utilized five input variables: postoperative serum gamma-glutamyl transpeptidase value, positive posterior cerebral artery (PCA) involvement on preoperative MRA, infarction as the rationale for surgery, presence of an infarction scar on preoperative MRI, and preoperative modified Rankin Scale score. Furthermore, the SHAP analysis identified presence of PCA involvement, infarction as the rationale for surgery, and presence of an infarction scar on preoperative MRI as positive influences on postoperative cerebral infarction. CONCLUSIONS This study indicates the usefulness of employing machine learning techniques with routine perioperative data to predict the occurrence of cerebral infarction after revascularization procedures in patients with MMD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助Enoelle采纳,获得10
刚刚
刚刚
慕青应助搬石头采纳,获得10
1秒前
可爱的函函应助阿巴阿巴采纳,获得10
1秒前
Hello应助jizhiyu采纳,获得10
1秒前
1秒前
科研通AI5应助无辜鞋子采纳,获得100
1秒前
1秒前
1秒前
2秒前
heyunhua23发布了新的文献求助10
3秒前
liuhll发布了新的文献求助30
3秒前
yuan发布了新的文献求助10
3秒前
瘦瘦柠檬发布了新的文献求助10
4秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
yxzha完成签到 ,获得积分10
6秒前
心想事陈完成签到,获得积分10
7秒前
jjjjjj发布了新的文献求助10
7秒前
Lucas应助will采纳,获得10
7秒前
muyassar完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
9秒前
9秒前
祝愿完成签到,获得积分10
10秒前
11秒前
十二完成签到,获得积分10
11秒前
Ye完成签到,获得积分20
12秒前
12秒前
LOWRY完成签到,获得积分10
12秒前
hx发布了新的文献求助20
13秒前
一口一个小朋友完成签到,获得积分10
13秒前
胡思乱想发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
zsyzxb完成签到,获得积分10
14秒前
Dean完成签到 ,获得积分10
14秒前
毓汐发布了新的文献求助10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663010
求助须知:如何正确求助?哪些是违规求助? 3223738
关于积分的说明 9753126
捐赠科研通 2933645
什么是DOI,文献DOI怎么找? 1606294
邀请新用户注册赠送积分活动 758404
科研通“疑难数据库(出版商)”最低求助积分说明 734792