A double-loop adaptive relevant vector machine combined with Harris Hawks optimization-based importance sampling

采样(信号处理) 控制理论(社会学) 支持向量机 计算机科学 工程类 人工智能 算法 数学 数学优化 控制工程 计算机视觉 控制(管理) 滤波器(信号处理)
作者
Xin Fan,Yongshou Liu,Zongyi Gu,Qin Yao
出处
期刊:Engineering Computations [Emerald (MCB UP)]
被引量:1
标识
DOI:10.1108/ec-10-2023-0672
摘要

Purpose Ensuring the safety of structures is important. However, when a structure possesses both an implicit performance function and an extremely small failure probability, traditional methods struggle to conduct a reliability analysis. Therefore, this paper proposes a reliability analysis method aimed at enhancing the efficiency of rare event analysis, using the widely recognized Relevant Vector Machine (RVM). Design/methodology/approach Drawing from the principles of importance sampling (IS), this paper employs Harris Hawks Optimization (HHO) to ascertain the optimal design point. This approach not only guarantees precision but also facilitates the RVM in approximating the limit state surface. When the U learning function, designed for Kriging, is applied to RVM, it results in sample clustering in the design of experiment (DoE). Therefore, this paper proposes a FU learning function, which is more suitable for RVM. Findings Three numerical examples and two engineering problem demonstrate the effectiveness of the proposed method. Originality/value By employing the HHO algorithm, this paper innovatively applies RVM in IS reliability analysis, proposing a novel method termed RVM-HIS. The RVM-HIS demonstrates exceptional computational efficiency, making it eminently suitable for rare events reliability analysis with implicit performance function. Moreover, the computational efficiency of RVM-HIS has been significantly enhanced through the improvement of the U learning function.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子时过完成签到,获得积分10
1秒前
drtianyunhong发布了新的文献求助10
2秒前
yan发布了新的文献求助10
3秒前
北极星完成签到 ,获得积分10
3秒前
4秒前
5秒前
花开半夏完成签到,获得积分10
5秒前
ZRDJ发布了新的文献求助10
5秒前
慕青应助xixi采纳,获得10
5秒前
9秒前
ppp完成签到,获得积分10
11秒前
ddung完成签到,获得积分10
11秒前
脑洞疼应助ifegiugfieugfig采纳,获得10
13秒前
cwy完成签到,获得积分10
13秒前
15秒前
陶醉冷亦完成签到,获得积分20
18秒前
zh完成签到 ,获得积分10
19秒前
asd发布了新的文献求助10
21秒前
22秒前
22秒前
执着的海冬完成签到,获得积分20
23秒前
25秒前
25秒前
26秒前
炼丹完成签到,获得积分10
26秒前
qqqq完成签到,获得积分10
26秒前
yyyf发布了新的文献求助10
26秒前
27秒前
27秒前
lim驳回了鲤鱼应助
28秒前
28秒前
lqlqhehehe完成签到,获得积分10
29秒前
玖念发布了新的文献求助10
30秒前
hdh完成签到,获得积分10
30秒前
30秒前
31秒前
yiersan发布了新的文献求助10
32秒前
打打应助辛勤的小海豚采纳,获得10
33秒前
kiki完成签到,获得积分10
33秒前
丰富又槐完成签到,获得积分10
33秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Encyclopedia of Computational Mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3269567
求助须知:如何正确求助?哪些是违规求助? 2909237
关于积分的说明 8348269
捐赠科研通 2579530
什么是DOI,文献DOI怎么找? 1402849
科研通“疑难数据库(出版商)”最低求助积分说明 655552
邀请新用户注册赠送积分活动 634808