Investigation of the MDM2-binding potential of de novo designed peptides using enhanced sampling simulations

分子动力学 生物信息学 平方毫米 化学 合理设计 计算生物学 生物物理学 生物化学 生物 细胞凋亡 计算化学 遗传学 基因
作者
Olanrewaju Ayodeji Durojaye,Abeeb Abiodun Yekeen,Mukhtar Oluwaseun Idris,Nkwachukwu Oziamara Okoro,Arome Solomon Odiba,Bennett C. Nwanguma
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:269 (Pt 2): 131840-131840 被引量:10
标识
DOI:10.1016/j.ijbiomac.2024.131840
摘要

The tumor suppressor p53 plays a crucial role in cellular responses to various stresses, regulating key processes such as apoptosis, senescence, and DNA repair. Dysfunctional p53, prevalent in approximately 50 % of human cancers, contributes to tumor development and resistance to treatment. This study employed deep learning-based protein design and structure prediction methods to identify novel high-affinity peptide binders (Pep1 and Pep2) targeting MDM2, with the aim of disrupting its interaction with p53. Extensive all-atom molecular dynamics simulations highlighted the stability of the designed peptide in complex with the target, supported by several structural analyses, including RMSD, RMSF, Rg, SASA, PCA, and free energy landscapes. Using the steered molecular dynamics and umbrella sampling simulations, we elucidate the dissociation dynamics of p53, Pep1, and Pep2 from MDM2. Notable differences in interaction profiles were observed, emphasizing the distinct dissociation patterns of each peptide. In conclusion, the results of our umbrella sampling simulations suggest Pep1 as a higher-affinity MDM2 binder compared to p53 and Pep2, positioning it as a potential inhibitor of the MDM2-p53 interaction. Using state-of-the-art protein design tools and advanced MD simulations, this study provides a comprehensive framework for rational in silico design of peptide binders with therapeutic implications in disrupting MDM2-p53 interactions for anticancer interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助ctc采纳,获得10
1秒前
逆风飞扬完成签到,获得积分10
3秒前
Criminology34应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
Criminology34应助科研通管家采纳,获得10
3秒前
3秒前
文艺裘完成签到,获得积分10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
6666应助科研通管家采纳,获得10
4秒前
4秒前
Criminology34应助科研通管家采纳,获得10
4秒前
悠悠应助科研通管家采纳,获得30
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
6666应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
Criminology34应助科研通管家采纳,获得10
4秒前
Criminology34应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
4秒前
英姑应助冰墨采纳,获得10
4秒前
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
Criminology34应助科研通管家采纳,获得10
4秒前
领导范儿应助ecrrry采纳,获得10
4秒前
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得30
4秒前
ding应助科研通管家采纳,获得30
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
善学以致用应助Zhaobin采纳,获得10
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5750918
求助须知:如何正确求助?哪些是违规求助? 5466503
关于积分的说明 15368457
捐赠科研通 4890153
什么是DOI,文献DOI怎么找? 2629530
邀请新用户注册赠送积分活动 1577791
关于科研通互助平台的介绍 1534079