Investigation of the MDM2-binding potential of de novo designed peptides using enhanced sampling simulations

分子动力学 生物信息学 平方毫米 化学 合理设计 计算生物学 生物物理学 生物化学 生物 细胞凋亡 计算化学 遗传学 基因
作者
Olanrewaju Ayodeji Durojaye,Abeeb Abiodun Yekeen,Mukhtar Oluwaseun Idris,Nkwachukwu Oziamara Okoro,Arome Solomon Odiba,Bennett C. Nwanguma
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:269: 131840-131840 被引量:3
标识
DOI:10.1016/j.ijbiomac.2024.131840
摘要

The tumor suppressor p53 plays a crucial role in cellular responses to various stresses, regulating key processes such as apoptosis, senescence, and DNA repair. Dysfunctional p53, prevalent in approximately 50 % of human cancers, contributes to tumor development and resistance to treatment. This study employed deep learning-based protein design and structure prediction methods to identify novel high-affinity peptide binders (Pep1 and Pep2) targeting MDM2, with the aim of disrupting its interaction with p53. Extensive all-atom molecular dynamics simulations highlighted the stability of the designed peptide in complex with the target, supported by several structural analyses, including RMSD, RMSF, Rg, SASA, PCA, and free energy landscapes. Using the steered molecular dynamics and umbrella sampling simulations, we elucidate the dissociation dynamics of p53, Pep1, and Pep2 from MDM2. Notable differences in interaction profiles were observed, emphasizing the distinct dissociation patterns of each peptide. In conclusion, the results of our umbrella sampling simulations suggest Pep1 as a higher-affinity MDM2 binder compared to p53 and Pep2, positioning it as a potential inhibitor of the MDM2-p53 interaction. Using state-of-the-art protein design tools and advanced MD simulations, this study provides a comprehensive framework for rational in silico design of peptide binders with therapeutic implications in disrupting MDM2-p53 interactions for anticancer interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rico发布了新的文献求助10
1秒前
2秒前
3秒前
ttt发布了新的文献求助10
3秒前
善学以致用应助alive采纳,获得10
3秒前
xxxxx完成签到 ,获得积分10
4秒前
科研通AI6应助优美皮皮虾采纳,获得10
4秒前
5秒前
5秒前
超级棒棒糖完成签到 ,获得积分10
5秒前
JrPaleo101应助mumuwang采纳,获得30
7秒前
xiaoyi发布了新的文献求助10
7秒前
8秒前
xiaolin完成签到,获得积分10
8秒前
doudou完成签到 ,获得积分10
9秒前
9秒前
gdh发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
段段小无敌完成签到,获得积分10
10秒前
11秒前
pzh发布了新的文献求助300
13秒前
13秒前
量子星尘发布了新的文献求助10
15秒前
斿斿发布了新的文献求助10
15秒前
此时留念发布了新的文献求助10
16秒前
orixero应助wtn采纳,获得10
17秒前
17秒前
19秒前
平安喜乐完成签到,获得积分10
20秒前
21秒前
梁成伟完成签到,获得积分20
22秒前
22秒前
ʚᵗᑋᵃᐢᵏ ᵞᵒᵘɞ完成签到,获得积分10
22秒前
别嚣张完成签到,获得积分10
23秒前
treelet007发布了新的文献求助10
23秒前
xxfsx应助温柔柜子采纳,获得10
23秒前
24秒前
wanci应助负责觅海采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430672
求助须知:如何正确求助?哪些是违规求助? 4543691
关于积分的说明 14188718
捐赠科研通 4462088
什么是DOI,文献DOI怎么找? 2446408
邀请新用户注册赠送积分活动 1437782
关于科研通互助平台的介绍 1414523