Investigation of the MDM2-binding potential of de novo designed peptides using enhanced sampling simulations

分子动力学 生物信息学 平方毫米 化学 合理设计 计算生物学 生物物理学 生物化学 生物 细胞凋亡 计算化学 遗传学 基因
作者
Olanrewaju Ayodeji Durojaye,Abeeb Abiodun Yekeen,Mukhtar Oluwaseun Idris,Nkwachukwu Oziamara Okoro,Arome Solomon Odiba,Bennett C. Nwanguma
出处
期刊:International Journal of Biological Macromolecules [Elsevier BV]
卷期号:269: 131840-131840 被引量:3
标识
DOI:10.1016/j.ijbiomac.2024.131840
摘要

The tumor suppressor p53 plays a crucial role in cellular responses to various stresses, regulating key processes such as apoptosis, senescence, and DNA repair. Dysfunctional p53, prevalent in approximately 50 % of human cancers, contributes to tumor development and resistance to treatment. This study employed deep learning-based protein design and structure prediction methods to identify novel high-affinity peptide binders (Pep1 and Pep2) targeting MDM2, with the aim of disrupting its interaction with p53. Extensive all-atom molecular dynamics simulations highlighted the stability of the designed peptide in complex with the target, supported by several structural analyses, including RMSD, RMSF, Rg, SASA, PCA, and free energy landscapes. Using the steered molecular dynamics and umbrella sampling simulations, we elucidate the dissociation dynamics of p53, Pep1, and Pep2 from MDM2. Notable differences in interaction profiles were observed, emphasizing the distinct dissociation patterns of each peptide. In conclusion, the results of our umbrella sampling simulations suggest Pep1 as a higher-affinity MDM2 binder compared to p53 and Pep2, positioning it as a potential inhibitor of the MDM2-p53 interaction. Using state-of-the-art protein design tools and advanced MD simulations, this study provides a comprehensive framework for rational in silico design of peptide binders with therapeutic implications in disrupting MDM2-p53 interactions for anticancer interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhm发布了新的文献求助30
刚刚
慕青应助微凉采纳,获得10
1秒前
zhangman完成签到,获得积分10
2秒前
传奇3应助lucas采纳,获得10
2秒前
李健应助比巴伯采纳,获得10
3秒前
Yixiaofei发布了新的文献求助100
3秒前
小辣里发布了新的文献求助10
3秒前
Research完成签到 ,获得积分10
4秒前
zzx完成签到 ,获得积分10
4秒前
4秒前
4秒前
wpp完成签到,获得积分10
4秒前
heyihao应助hiipaige采纳,获得10
4秒前
科目三应助大头采纳,获得10
5秒前
5秒前
6秒前
我和狂三贴贴完成签到,获得积分10
7秒前
7秒前
7秒前
乐乐应助熬夜大王采纳,获得10
9秒前
123完成签到,获得积分10
10秒前
10秒前
小辣里完成签到,获得积分10
10秒前
12秒前
12秒前
13秒前
桐桐应助realyxy采纳,获得50
13秒前
CodeCraft应助Liu采纳,获得30
14秒前
可积发布了新的文献求助10
15秒前
meimei发布了新的文献求助10
16秒前
liufy关注了科研通微信公众号
16秒前
jahcenia完成签到,获得积分10
17秒前
xy完成签到,获得积分10
18秒前
19秒前
19秒前
隐形曼青应助夜阑卧听采纳,获得10
19秒前
懒羊羊完成签到,获得积分10
19秒前
20秒前
zhm完成签到,获得积分20
20秒前
21秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979479
求助须知:如何正确求助?哪些是违规求助? 3523421
关于积分的说明 11217607
捐赠科研通 3260944
什么是DOI,文献DOI怎么找? 1800264
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807126