清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Investigation of the MDM2-binding potential of de novo designed peptides using enhanced sampling simulations

分子动力学 生物信息学 平方毫米 化学 合理设计 计算生物学 生物物理学 生物化学 生物 细胞凋亡 计算化学 遗传学 基因
作者
Olanrewaju Ayodeji Durojaye,Abeeb Abiodun Yekeen,Mukhtar Oluwaseun Idris,Nkwachukwu Oziamara Okoro,Arome Solomon Odiba,Bennett C. Nwanguma
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:269 (Pt 2): 131840-131840 被引量:10
标识
DOI:10.1016/j.ijbiomac.2024.131840
摘要

The tumor suppressor p53 plays a crucial role in cellular responses to various stresses, regulating key processes such as apoptosis, senescence, and DNA repair. Dysfunctional p53, prevalent in approximately 50 % of human cancers, contributes to tumor development and resistance to treatment. This study employed deep learning-based protein design and structure prediction methods to identify novel high-affinity peptide binders (Pep1 and Pep2) targeting MDM2, with the aim of disrupting its interaction with p53. Extensive all-atom molecular dynamics simulations highlighted the stability of the designed peptide in complex with the target, supported by several structural analyses, including RMSD, RMSF, Rg, SASA, PCA, and free energy landscapes. Using the steered molecular dynamics and umbrella sampling simulations, we elucidate the dissociation dynamics of p53, Pep1, and Pep2 from MDM2. Notable differences in interaction profiles were observed, emphasizing the distinct dissociation patterns of each peptide. In conclusion, the results of our umbrella sampling simulations suggest Pep1 as a higher-affinity MDM2 binder compared to p53 and Pep2, positioning it as a potential inhibitor of the MDM2-p53 interaction. Using state-of-the-art protein design tools and advanced MD simulations, this study provides a comprehensive framework for rational in silico design of peptide binders with therapeutic implications in disrupting MDM2-p53 interactions for anticancer interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
Criminology34应助读书的时候采纳,获得30
10秒前
玛卡巴卡爱吃饭完成签到 ,获得积分10
10秒前
23秒前
23秒前
热情依白应助读书的时候采纳,获得30
27秒前
送你一匹马完成签到,获得积分10
27秒前
meeteryu完成签到,获得积分10
36秒前
42秒前
44秒前
大医仁心完成签到 ,获得积分10
47秒前
54秒前
58秒前
59秒前
59秒前
Criminology34应助读书的时候采纳,获得10
59秒前
1分钟前
多啦啦发布了新的文献求助30
1分钟前
1分钟前
Ruogu完成签到,获得积分10
1分钟前
阿泽发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
清脆如娆完成签到 ,获得积分10
1分钟前
搜集达人应助多啦啦采纳,获得10
1分钟前
热情依白应助读书的时候采纳,获得10
1分钟前
佳宝(不可以喝但能吃完成签到,获得积分10
1分钟前
领导范儿应助包容山灵采纳,获得30
1分钟前
1分钟前
1分钟前
1分钟前
热情依白应助读书的时候采纳,获得10
1分钟前
1分钟前
ccj完成签到,获得积分20
1分钟前
1分钟前
ccj发布了新的文献求助10
1分钟前
我是笨蛋完成签到 ,获得积分10
2分钟前
科研通AI2S应助读书的时候采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
hhhpass应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5688129
求助须知:如何正确求助?哪些是违规求助? 5063718
关于积分的说明 15193691
捐赠科研通 4846465
什么是DOI,文献DOI怎么找? 2598868
邀请新用户注册赠送积分活动 1550976
关于科研通互助平台的介绍 1509573