Investigation of the MDM2-binding potential of de novo designed peptides using enhanced sampling simulations

分子动力学 生物信息学 平方毫米 化学 合理设计 计算生物学 生物物理学 生物化学 生物 细胞凋亡 计算化学 遗传学 基因
作者
Olanrewaju Ayodeji Durojaye,Abeeb Abiodun Yekeen,Mukhtar Oluwaseun Idris,Nkwachukwu Oziamara Okoro,Arome Solomon Odiba,Bennett C. Nwanguma
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:269: 131840-131840 被引量:3
标识
DOI:10.1016/j.ijbiomac.2024.131840
摘要

The tumor suppressor p53 plays a crucial role in cellular responses to various stresses, regulating key processes such as apoptosis, senescence, and DNA repair. Dysfunctional p53, prevalent in approximately 50 % of human cancers, contributes to tumor development and resistance to treatment. This study employed deep learning-based protein design and structure prediction methods to identify novel high-affinity peptide binders (Pep1 and Pep2) targeting MDM2, with the aim of disrupting its interaction with p53. Extensive all-atom molecular dynamics simulations highlighted the stability of the designed peptide in complex with the target, supported by several structural analyses, including RMSD, RMSF, Rg, SASA, PCA, and free energy landscapes. Using the steered molecular dynamics and umbrella sampling simulations, we elucidate the dissociation dynamics of p53, Pep1, and Pep2 from MDM2. Notable differences in interaction profiles were observed, emphasizing the distinct dissociation patterns of each peptide. In conclusion, the results of our umbrella sampling simulations suggest Pep1 as a higher-affinity MDM2 binder compared to p53 and Pep2, positioning it as a potential inhibitor of the MDM2-p53 interaction. Using state-of-the-art protein design tools and advanced MD simulations, this study provides a comprehensive framework for rational in silico design of peptide binders with therapeutic implications in disrupting MDM2-p53 interactions for anticancer interventions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冂xx易云完成签到,获得积分10
刚刚
嬴政飞发布了新的文献求助10
刚刚
苏苏完成签到,获得积分10
1秒前
1秒前
lpk完成签到,获得积分10
1秒前
科研通AI6应助guyutang采纳,获得20
2秒前
2秒前
4秒前
qiuli发布了新的文献求助10
5秒前
6秒前
hh完成签到,获得积分20
6秒前
儒雅的蜜粉完成签到,获得积分10
7秒前
shufessm完成签到,获得积分0
8秒前
寇博翔发布了新的文献求助10
9秒前
hh发布了新的文献求助10
9秒前
寻绿完成签到,获得积分10
10秒前
cora完成签到 ,获得积分10
15秒前
万能图书馆应助海蓝博采纳,获得10
17秒前
18秒前
lpk发布了新的文献求助10
18秒前
23秒前
24秒前
25秒前
豪哥发布了新的文献求助10
25秒前
褪色完成签到,获得积分10
25秒前
xiaoyu完成签到,获得积分10
25秒前
25秒前
ljy发布了新的文献求助10
26秒前
Auh完成签到,获得积分10
27秒前
海蓝博发布了新的文献求助10
29秒前
29秒前
cjg完成签到,获得积分10
29秒前
绿野仙踪发布了新的文献求助10
30秒前
31秒前
LOMO发布了新的文献求助10
31秒前
隐形曼青应助向上采纳,获得10
31秒前
cxb完成签到,获得积分10
32秒前
34秒前
Lucas应助ljy采纳,获得10
34秒前
aa发布了新的文献求助50
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563681
求助须知:如何正确求助?哪些是违规求助? 4648553
关于积分的说明 14685532
捐赠科研通 4590511
什么是DOI,文献DOI怎么找? 2518648
邀请新用户注册赠送积分活动 1491204
关于科研通互助平台的介绍 1462478