Geographical origin discrimination of black beans using near-infrared (NIR) spectroscopy combined with fuzzy regularized complete linear discriminant analysis (FRCLDA)

线性判别分析 化学 近红外光谱 光谱学 模式识别(心理学) 分析化学(期刊) 人工智能 统计 色谱法 数学 光学 物理 量子力学 计算机科学
作者
Chenao Xie,Xiaohong Wu,Bin Wu,Chunxia Dai
出处
期刊:Analytical Letters [Informa]
卷期号:: 1-22
标识
DOI:10.1080/00032719.2024.2329702
摘要

Black beans from different geographical origins exhibit variations in terms of their nutritional and economic values. Therefore, ensuring traceability of the geographical origin of black beans is essential for both consumers and the product processing industries. The study designed a comprehensive black bean origin identification model using near-infrared (NIR) spectroscopy combined with discriminant analysis algorithms. To enhance the performance of the model, this study incorporated fuzzy logic into regularized complete linear discriminant analysis (RCLDA) and proposed the fuzzy regularized complete linear discriminant analysis (FRCLDA). This innovative approach aims to extract additional information from overlapping NIR spectra of black beans. NIR spectra of black beans from five locations were collected employing a portable near-infrared spectrometer. In the preprocessing stage, the Savitzky–Golay (SG) and mean centering (MC) were applied to process the raw spectra. Subsequently, complete linear discriminant analysis (CLDA), RCLDA, and FRCLDA were utilized to extract the information from the processed data. Finally, k-nearest neighbor (KNN), support vector machines (SVM), and extreme learning machine (ELM) were employed to classify the black bean samples based on the extracted features. The results indicated that KNN achieved the best classification performance. The FRCLDA-KNN model achieved the exceptional performance with a classification accuracy of 99.23% on the test set. Therefore, the system demonstrates satisfactory accuracy and performance in accurately identifying black beans from different geographical origins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助gwh采纳,获得10
1秒前
1秒前
1秒前
1秒前
隐形曼青应助zhihan采纳,获得10
3秒前
3秒前
xylxyl完成签到,获得积分10
3秒前
4秒前
ZBN完成签到,获得积分10
4秒前
222关闭了222文献求助
5秒前
chinh完成签到,获得积分10
5秒前
钮祜禄废废完成签到,获得积分10
5秒前
5秒前
曾经富完成签到,获得积分10
7秒前
酷酷海豚完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
8秒前
9秒前
青青完成签到 ,获得积分10
11秒前
Chan0501发布了新的文献求助10
11秒前
昭昭完成签到,获得积分10
12秒前
SCI发布了新的文献求助10
12秒前
卓然完成签到,获得积分10
12秒前
李来仪发布了新的文献求助10
13秒前
14秒前
菲菲呀完成签到,获得积分10
14秒前
Rrr发布了新的文献求助10
14秒前
16秒前
陌路完成签到,获得积分10
16秒前
善学以致用应助leon采纳,获得30
16秒前
17秒前
斯文败类应助嘻嘻采纳,获得10
17秒前
科研通AI5应助小只bb采纳,获得30
17秒前
yyyy发布了新的文献求助10
17秒前
2023AKY完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794