已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Geographical origin discrimination of black beans using near-infrared (NIR) spectroscopy combined with fuzzy regularized complete linear discriminant analysis (FRCLDA)

线性判别分析 化学 近红外光谱 光谱学 模式识别(心理学) 分析化学(期刊) 人工智能 统计 色谱法 数学 光学 计算机科学 量子力学 物理
作者
Chenao Xie,Xiaohong Wu,Bin Wu,Chunxia Dai
出处
期刊:Analytical Letters [Informa]
卷期号:: 1-22
标识
DOI:10.1080/00032719.2024.2329702
摘要

Black beans from different geographical origins exhibit variations in terms of their nutritional and economic values. Therefore, ensuring traceability of the geographical origin of black beans is essential for both consumers and the product processing industries. The study designed a comprehensive black bean origin identification model using near-infrared (NIR) spectroscopy combined with discriminant analysis algorithms. To enhance the performance of the model, this study incorporated fuzzy logic into regularized complete linear discriminant analysis (RCLDA) and proposed the fuzzy regularized complete linear discriminant analysis (FRCLDA). This innovative approach aims to extract additional information from overlapping NIR spectra of black beans. NIR spectra of black beans from five locations were collected employing a portable near-infrared spectrometer. In the preprocessing stage, the Savitzky–Golay (SG) and mean centering (MC) were applied to process the raw spectra. Subsequently, complete linear discriminant analysis (CLDA), RCLDA, and FRCLDA were utilized to extract the information from the processed data. Finally, k-nearest neighbor (KNN), support vector machines (SVM), and extreme learning machine (ELM) were employed to classify the black bean samples based on the extracted features. The results indicated that KNN achieved the best classification performance. The FRCLDA-KNN model achieved the exceptional performance with a classification accuracy of 99.23% on the test set. Therefore, the system demonstrates satisfactory accuracy and performance in accurately identifying black beans from different geographical origins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狂野雅彤发布了新的文献求助10
1秒前
真不错完成签到,获得积分10
4秒前
思源应助DD采纳,获得10
6秒前
7秒前
7秒前
天天快乐应助好天气采纳,获得10
10秒前
14秒前
CipherSage应助科研通管家采纳,获得10
15秒前
无极微光应助科研通管家采纳,获得20
15秒前
归尘应助科研通管家采纳,获得30
15秒前
归尘应助科研通管家采纳,获得30
15秒前
归尘应助科研通管家采纳,获得30
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
搜集达人应助科研通管家采纳,获得10
15秒前
xxfsx应助科研通管家采纳,获得10
15秒前
所所应助科研通管家采纳,获得10
15秒前
酷波er应助科研通管家采纳,获得10
15秒前
15秒前
归尘应助科研通管家采纳,获得30
15秒前
16秒前
淳于惜雪完成签到 ,获得积分10
16秒前
16秒前
达布妞发布了新的文献求助10
17秒前
-17完成签到 ,获得积分10
17秒前
18秒前
小马甲应助直率孤风采纳,获得10
19秒前
领导范儿应助Rzozsye采纳,获得10
21秒前
chen完成签到,获得积分10
22秒前
ifly发布了新的文献求助10
22秒前
23秒前
CodeCraft应助agf采纳,获得10
24秒前
领导范儿应助ZBQ采纳,获得10
24秒前
充电宝应助火鸡味锅巴采纳,获得10
26秒前
April完成签到,获得积分10
26秒前
君兰发布了新的文献求助10
27秒前
在水一方应助misaka采纳,获得10
27秒前
研研研究不出完成签到 ,获得积分10
28秒前
Bin发布了新的文献求助10
28秒前
好天气发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
复杂系统建模与弹性模型研究 2000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
睡眠呼吸障碍治疗学 600
Input 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488216
求助须知:如何正确求助?哪些是违规求助? 4587188
关于积分的说明 14412948
捐赠科研通 4518460
什么是DOI,文献DOI怎么找? 2475790
邀请新用户注册赠送积分活动 1461373
关于科研通互助平台的介绍 1434279