Geographical origin discrimination of black beans using near-infrared (NIR) spectroscopy combined with fuzzy regularized complete linear discriminant analysis (FRCLDA)

线性判别分析 化学 近红外光谱 光谱学 模式识别(心理学) 分析化学(期刊) 人工智能 统计 色谱法 数学 光学 计算机科学 量子力学 物理
作者
Chenao Xie,Xiaohong Wu,Bin Wu,Chunxia Dai
出处
期刊:Analytical Letters [Informa]
卷期号:: 1-22
标识
DOI:10.1080/00032719.2024.2329702
摘要

Black beans from different geographical origins exhibit variations in terms of their nutritional and economic values. Therefore, ensuring traceability of the geographical origin of black beans is essential for both consumers and the product processing industries. The study designed a comprehensive black bean origin identification model using near-infrared (NIR) spectroscopy combined with discriminant analysis algorithms. To enhance the performance of the model, this study incorporated fuzzy logic into regularized complete linear discriminant analysis (RCLDA) and proposed the fuzzy regularized complete linear discriminant analysis (FRCLDA). This innovative approach aims to extract additional information from overlapping NIR spectra of black beans. NIR spectra of black beans from five locations were collected employing a portable near-infrared spectrometer. In the preprocessing stage, the Savitzky–Golay (SG) and mean centering (MC) were applied to process the raw spectra. Subsequently, complete linear discriminant analysis (CLDA), RCLDA, and FRCLDA were utilized to extract the information from the processed data. Finally, k-nearest neighbor (KNN), support vector machines (SVM), and extreme learning machine (ELM) were employed to classify the black bean samples based on the extracted features. The results indicated that KNN achieved the best classification performance. The FRCLDA-KNN model achieved the exceptional performance with a classification accuracy of 99.23% on the test set. Therefore, the system demonstrates satisfactory accuracy and performance in accurately identifying black beans from different geographical origins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ubw完成签到,获得积分10
刚刚
XMFM发布了新的文献求助10
1秒前
华康发布了新的文献求助10
3秒前
坦率若魔发布了新的文献求助10
3秒前
4秒前
apocalypse完成签到 ,获得积分10
4秒前
细心香烟完成签到 ,获得积分10
6秒前
bd应助zjq采纳,获得10
9秒前
juju完成签到,获得积分10
12秒前
扁头完成签到,获得积分10
14秒前
上官若男应助华康采纳,获得10
15秒前
慕青应助自觉远山采纳,获得10
16秒前
18秒前
19秒前
紫菜完成签到,获得积分10
20秒前
摔碎玻璃瓶完成签到,获得积分10
20秒前
狂野乌冬面完成签到 ,获得积分10
21秒前
suqian发布了新的文献求助10
22秒前
无限的水壶完成签到 ,获得积分10
23秒前
24秒前
25秒前
ruoyi发布了新的文献求助10
26秒前
27秒前
foxp3发布了新的文献求助10
27秒前
27秒前
31秒前
天真大神完成签到,获得积分10
31秒前
34秒前
大宇发布了新的文献求助10
35秒前
35秒前
柳叶刀完成签到 ,获得积分10
35秒前
jhjh完成签到,获得积分10
38秒前
39秒前
39秒前
catnipz发布了新的文献求助10
40秒前
40秒前
42秒前
。。。发布了新的文献求助10
42秒前
大模型应助活力的尔白采纳,获得20
43秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143637
求助须知:如何正确求助?哪些是违规求助? 2795095
关于积分的说明 7813306
捐赠科研通 2451156
什么是DOI,文献DOI怎么找? 1304338
科研通“疑难数据库(出版商)”最低求助积分说明 627213
版权声明 601393