Enhanced Proximity of Rh1,2‐Rhn Ensembles Encaged in UiO‐67 Boosting Catalytic Conversion of Syngas to Oxygenates

氧合物 合成气 Boosting(机器学习) 催化作用 材料科学 化学 有机化学 计算机科学 机器学习
作者
Jun Yu,Tingting Liu,Qingqing Gu,Jia Wang,Ying Han,Gonghui Li,Qiangsheng Guo,Ye Gu,Xin‐Ping Wu,Xue‐Qing Gong,Bing Yang,Dongsen Mao
出处
期刊:Angewandte Chemie [Wiley]
卷期号:63 (20) 被引量:4
标识
DOI:10.1002/anie.202401568
摘要

Abstract Maintaining high conversion under the premise of high oxygenates selectivity in syngas conversion is important but a formidable challenge in Rh catalysis. Monometallic Rh catalysts provide poor oxygenate conversion efficiency, and efforts have been focused on constructing adjacent polymetallic sites; however, the one‐pass yields of C 2+ oxygenates over the reported Rh‐based catalysts were mostly <20 %. In this study, we constructed a monometallic Rh catalyst encapsulated in UiO‐67 (Rh/UiO‐67) with enhanced proximity to dual‐site Rh 1,2 ‐Rh n ensembles. Unexpectedly, this catalyst exhibited high efficacy for oxygenate synthesis from syngas, giving a high oxygenate selectivity of 72.0 % with a remarkable CO conversion of 50.4 %, and the one‐pass yield of C 2+ oxygenates exceeded 25 %. The state‐of‐the‐art characterizations further revealed the spontaneous formation of an ensemble of Rh single atoms/dimers (Rh 1,2 ) in the proximity of ultrasmall Rh clusters (Rh n ) confined within the nanocavity of UiO‐67, providing adjacent Rh + ‐Rh 0 dual sites dynamically during the reaction that promote the relay of the undissociated CHO species to the CH x species. Thus, our results open a new route for designing highly efficient Rh catalysts for the conversion of syngas to oxygenates by precisely tuning the ensemble and proximity of the dual active sites in a confined space.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助愫问采纳,获得10
刚刚
刚刚
刚刚
1秒前
zhang发布了新的文献求助10
1秒前
无辜善愁发布了新的文献求助10
1秒前
ybyyyy发布了新的文献求助10
1秒前
棉花完成签到,获得积分20
2秒前
脑洞疼应助Duel采纳,获得10
2秒前
2秒前
yyyyyy应助skier采纳,获得10
3秒前
3秒前
zhutae发布了新的文献求助10
4秒前
4秒前
CipherSage应助十一采纳,获得10
5秒前
5秒前
开心千青完成签到,获得积分10
6秒前
共享精神应助大气傲之采纳,获得10
6秒前
albertxin发布了新的文献求助10
6秒前
微尘完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
诚心谷南发布了新的文献求助10
8秒前
小蘑菇应助yyyyou采纳,获得10
8秒前
JM完成签到,获得积分10
9秒前
10秒前
lala完成签到,获得积分10
10秒前
晴空发布了新的文献求助10
10秒前
CodeCraft应助cc采纳,获得10
12秒前
12秒前
大个应助椿人采纳,获得10
12秒前
所所应助椿人采纳,获得10
12秒前
shi hui应助椿人采纳,获得10
12秒前
乐乐应助椿人采纳,获得10
12秒前
Owen应助椿人采纳,获得10
12秒前
12秒前
慕青应助椿人采纳,获得10
12秒前
orixero应助椿人采纳,获得10
12秒前
顾矜应助椿人采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3584384
求助须知:如何正确求助?哪些是违规求助? 3153406
关于积分的说明 9496882
捐赠科研通 2856006
什么是DOI,文献DOI怎么找? 1569829
邀请新用户注册赠送积分活动 735673
科研通“疑难数据库(出版商)”最低求助积分说明 721336