Convolutional Neural Network for Atherosclerotic Plaque Multiclass Semantic Image Segmentation in Transverse Ultrasound Images of Carotid Artery

卷积神经网络 分割 雅卡索引 超声波 人工智能 纤维帽 计算机科学 颈动脉 易损斑块 Sørensen–骰子系数 放射科 医学 模式识别(心理学) 图像分割 病理 心脏病学
作者
Lazar Dašić,Ognjen Pavić,Andjela Blagojević,Tijana Šušteršič,Nenad Filipović
出处
期刊:Lecture notes in networks and systems 卷期号:: 93-101
标识
DOI:10.1007/978-3-031-50755-7_10
摘要

Arterial stenosis is one of the most common diseases and if it is not discovered in time and adequately treated, it may have critical consequences, such as a debilitating stroke and even death. This is the reason why early detection is a number one priority. This disease occurs as a result of plaque deposition within the coronary vessel. The process of manually annotating plaque components is both resource and time consuming, therefore, an automatic and accurate segmentation tool is necessary. The goal of this research is to create a model that sufficiently identifies and segments atherosclerotic plaque components such as fibrous and calcified tissue and lipid core, by using Convolutional Neural Network (CNN) on transverse ultrasound imaging data of carotid artery. U-net model was trained with dataset of 60 ultrasound samples, collected and annotated by medical experts during TAXINOMISIS project, and achieved 96.94% and 57.38% Jaccard similarity coefficient (JSC) for segmentation of background and fibrous classes, respectively. On the contrary, model had difficulties with segmentation of lipid and calcified plaque components due to dataset being imbalanced and small, which is shown with respective JSC values of 19.05% and 32.68%. Future research will focus on expanding current dataset with additional annotated ultrasound samples, with the goal of improving segmentation of lipid and calcified plaque components.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷酷豌豆发布了新的文献求助10
2秒前
7秒前
zj完成签到,获得积分20
7秒前
9秒前
11秒前
上官若男应助羊羊采纳,获得10
12秒前
chen发布了新的文献求助10
12秒前
13秒前
123完成签到 ,获得积分10
16秒前
FKHY发布了新的文献求助10
17秒前
17秒前
轻松元正发布了新的文献求助10
19秒前
冷酷豌豆完成签到,获得积分10
20秒前
小小莫发布了新的文献求助10
21秒前
22秒前
23秒前
秋蚓完成签到 ,获得积分10
24秒前
yutang完成签到 ,获得积分10
25秒前
FKHY完成签到,获得积分10
27秒前
羊羊发布了新的文献求助10
27秒前
慕青应助Wang采纳,获得10
27秒前
ding应助能干太清采纳,获得10
28秒前
chen完成签到,获得积分10
28秒前
Ava应助轻松元正采纳,获得10
30秒前
李健应助虚幻青采纳,获得10
31秒前
32秒前
渡星舟完成签到,获得积分10
34秒前
纯真的晴儿完成签到 ,获得积分10
34秒前
36秒前
虚幻青完成签到,获得积分10
38秒前
清新的剑心完成签到 ,获得积分10
40秒前
差不多得了完成签到,获得积分10
41秒前
宜穎发布了新的文献求助10
49秒前
可爱的函函应助安详砖家采纳,获得10
49秒前
52秒前
英俊的铭应助赵先森采纳,获得10
53秒前
勤奋的热狗完成签到 ,获得积分10
53秒前
53秒前
飘逸锦程完成签到 ,获得积分10
54秒前
56秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316734
求助须知:如何正确求助?哪些是违规求助? 2948521
关于积分的说明 8540998
捐赠科研通 2624376
什么是DOI,文献DOI怎么找? 1436156
科研通“疑难数据库(出版商)”最低求助积分说明 665796
邀请新用户注册赠送积分活动 651738