卷积神经网络
分割
雅卡索引
超声波
人工智能
纤维帽
计算机科学
颈动脉
易损斑块
Sørensen–骰子系数
放射科
医学
模式识别(心理学)
图像分割
病理
心脏病学
作者
Lazar Dašić,Ognjen Pavić,Andjela Blagojević,Tijana Šušteršič,Nenad Filipović
出处
期刊:Lecture notes in networks and systems
日期:2024-01-01
卷期号:: 93-101
标识
DOI:10.1007/978-3-031-50755-7_10
摘要
Arterial stenosis is one of the most common diseases and if it is not discovered in time and adequately treated, it may have critical consequences, such as a debilitating stroke and even death. This is the reason why early detection is a number one priority. This disease occurs as a result of plaque deposition within the coronary vessel. The process of manually annotating plaque components is both resource and time consuming, therefore, an automatic and accurate segmentation tool is necessary. The goal of this research is to create a model that sufficiently identifies and segments atherosclerotic plaque components such as fibrous and calcified tissue and lipid core, by using Convolutional Neural Network (CNN) on transverse ultrasound imaging data of carotid artery. U-net model was trained with dataset of 60 ultrasound samples, collected and annotated by medical experts during TAXINOMISIS project, and achieved 96.94% and 57.38% Jaccard similarity coefficient (JSC) for segmentation of background and fibrous classes, respectively. On the contrary, model had difficulties with segmentation of lipid and calcified plaque components due to dataset being imbalanced and small, which is shown with respective JSC values of 19.05% and 32.68%. Future research will focus on expanding current dataset with additional annotated ultrasound samples, with the goal of improving segmentation of lipid and calcified plaque components.
科研通智能强力驱动
Strongly Powered by AbleSci AI