Abstract 3791: A prognostic signature based on inherited genetic polymorphisms for patients with uveal melanoma

黑色素瘤 医学 癌症 签名(拓扑) 肿瘤科 内科学 癌症研究 几何学 数学
作者
Thibault Verrier,Anne L. van de Ven,Alexandre Houy,Agathe Garcia,Gaëlle Pierron,Nathalie Cassoux,Manuel Rodrigues,Josselin Noirel,Marc‐Henri Stern
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:84 (6_Supplement): 3791-3791
标识
DOI:10.1158/1538-7445.am2024-3791
摘要

Abstract Introduction: Uveal melanoma (UM) is the most frequent eye malignancy in adults. Two UM subtypes exist, defined by Gene Expression Profiling or by genomic status: GEP class 1/disomy 3 [D3] and GEP class 2/monosomy 3 [M3] defining low-risk or high-risk of developing metastasis, respectively. However, these prognostic signatures require tumor samples, which may be difficult to obtain. We previously identified by a genome-wide association study (GWAS) frequent single nucleotide polymorphisms (SNP) in IRF4 and HERC2 associated with risk for D3 or M3 UM, respectively (1). Here, we aim to design a prognostic signature for the D3 and M3 UM subtypes based on these constitutive polymorphisms, available from blood samples. Experimental Procedures: We used the GWAS cohort of 1476 UM patients genotyped on GSA or Omni5. Risk SNPs coupled with clinical variables were used on a cohort of 497 UM patients (191 D3, 306 M3) in a statistical machine learning process to define a predictive signature of UM subtype. A cohort of 852 UM patients was used for validation. Results: We retained two SNPs, rs12203592 (in IRF4) and rs12913832 (in HERC2), tumor diameter and thickness, age at diagnosis and gender. We validated the predictive model in the validation cohort. The predicted high-risk group showed a decrease in time to relapse (TR) (HR: 3.72 [2.57 - 5.41], logrank p-value = 1.35E-15), overall survival (OS) (HR: 3.85 [2.58 - 5.73], logrank p-value = 1.24E-14) and progression-free-survival (PFS) (HR: 3.61 [2.32 - 5.61], logrank p-value = 6.55E-11), compared with the predicted low-risk group. Conclusion: Common germline polymorphisms contribute to the prediction of metastatic risk in patients with localized uveal melanoma. This information could be especially useful when access to the tumor is problematic. 1. Mobuchon et al, J Natl Cancer Inst, 114, 2, (2022) Citation Format: Thibault Verrier, Anaïs Le Ven, Alexandre Houy, Agathe Garcia, Pierron Gaelle, Nathalie Cassoux, Manuel Rodrigues, Josselin Noirel, Marc-Henri Stern. A prognostic signature based on inherited genetic polymorphisms for patients with uveal melanoma [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2024; Part 1 (Regular Abstracts); 2024 Apr 5-10; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2024;84(6_Suppl):Abstract nr 3791.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shanshan发布了新的文献求助10
刚刚
kun完成签到,获得积分10
1秒前
亓大大发布了新的文献求助10
1秒前
爆米花应助三日采纳,获得10
1秒前
WangSiwei完成签到,获得积分10
1秒前
汉堡包应助东方羽之佳采纳,获得10
1秒前
桐桐应助Han采纳,获得10
2秒前
2秒前
小路完成签到,获得积分10
2秒前
嗯哼完成签到,获得积分10
2秒前
搬砖王完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
学习发布了新的文献求助10
3秒前
tian发布了新的文献求助10
3秒前
3秒前
bkagyin应助周学采纳,获得10
4秒前
皖医梁朝伟完成签到 ,获得积分0
4秒前
诸语薇发布了新的文献求助10
4秒前
852应助jin采纳,获得10
5秒前
风吹麦田应助wenci采纳,获得30
5秒前
6秒前
6秒前
6秒前
图灵桑发布了新的文献求助10
7秒前
7秒前
ewfr完成签到,获得积分20
8秒前
左手骑车发布了新的文献求助20
8秒前
pigzhu完成签到,获得积分10
8秒前
科目三应助谦让的板栗采纳,获得10
8秒前
8秒前
打打应助ovc采纳,获得10
8秒前
汐凡完成签到 ,获得积分10
8秒前
ZC完成签到,获得积分10
8秒前
9秒前
璐璐发布了新的文献求助10
9秒前
Nancy发布了新的文献求助10
9秒前
鲤鱼月饼完成签到 ,获得积分10
9秒前
shanshan完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624579
求助须知:如何正确求助?哪些是违规求助? 4710376
关于积分的说明 14950345
捐赠科研通 4778512
什么是DOI,文献DOI怎么找? 2553318
邀请新用户注册赠送积分活动 1515240
关于科研通互助平台的介绍 1475577