Multi-degree-of-freedom unmanned aerial vehicle control combining a hybrid brain-computer interface and visual obstacle avoidance

计算机科学 避障 接口(物质) 障碍物 计算机视觉 脑-机接口 学位(音乐) 人工智能 控制(管理) 人机交互 移动机器人 机器人 操作系统 心理学 物理 气泡 脑电图 最大气泡压力法 精神科 政治学 声学 法学
作者
Shanghong Xie,Wei Gao,Zhen Zeng,Q. M. J. Wu,Qian Huang,Nianming Ban,Qian Wu,Jiahui Pan
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108294-108294
标识
DOI:10.1016/j.engappai.2024.108294
摘要

The difficulty of unmanned aerial vehicle (UAV) control recently lies in multidirectional movement in 3-dimensional space, improving control accuracy and manipulation safety. To address these challenges, a UAV control system that incorporates a hybrid brain-computer interface (hBCI), gyroscope and visual obstacle avoidance based on monocular depth estimation is proposed. Approach. We propose an efficient steady-state visual evoked potential (SSVEP) classification network (CL-NET) featuring a one-dimensional convolutional neural network, a long short-term memory module and an attention module to identify the user's intention for UAV movement in the front, back, left and right directions. The take-off, landing and rising control of the UAV is realized by an electrooculogram (EOG) signal detection algorithm, a blink state detector. In addition, the UAV can fly in an oblique state and rotate according to the current head posture detected by a gyroscope. Furthermore, an improved monocular depth estimation network is employed to design the autonomous obstacle avoidance module of the UAV, ensuring the safety of the brain-controlled system in practice. Main results. The proposed CL-NET delivers an accuracy of 98.67% on the public dataset and an accuracy of 97.92% on the self-collected dataset, both of which surpass the performance of state-of-the-art models. Additionally, we set up a brain control group and a remote control group to conduct practical experiments in a realistic environment. In the experiments involving sixteen subjects, the proposed UAV control system reached an average information transfer rate (ITR) of 44.09 bits/min, and the brain control group had a lower collision rate than the remote control group. Significance. The hybrid control method ensures that the multi-degree-of-freedom (multi-DOF) UAV control system maintains outstanding performance while ensuring good safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胡明月发布了新的文献求助10
1秒前
三石完成签到,获得积分10
1秒前
科研通AI2S应助BUG采纳,获得10
2秒前
5秒前
5秒前
林cy完成签到,获得积分10
5秒前
6秒前
田様应助研友_LOoomL采纳,获得10
7秒前
豆粒完成签到,获得积分10
8秒前
kento发布了新的文献求助20
9秒前
完美的天空应助Kk采纳,获得30
9秒前
胡明月完成签到,获得积分10
9秒前
9秒前
充电宝应助cxy采纳,获得10
10秒前
加油发布了新的文献求助10
10秒前
小蘑菇应助暗号采纳,获得10
10秒前
豆粒发布了新的文献求助10
11秒前
三新荞应助天才小熊猫采纳,获得10
12秒前
LY完成签到,获得积分20
12秒前
曾经的路灯完成签到,获得积分10
14秒前
15秒前
乐乐应助高贵的惠采纳,获得10
15秒前
haha9发布了新的文献求助10
15秒前
杨大泡泡完成签到 ,获得积分10
16秒前
很大脾气的东北虎完成签到,获得积分10
19秒前
Genji完成签到,获得积分10
19秒前
韩倩发布了新的文献求助10
19秒前
LY发布了新的文献求助10
20秒前
21秒前
ai完成签到,获得积分10
21秒前
CodeCraft应助不吃香菜采纳,获得10
22秒前
Leisure_Lee完成签到,获得积分10
22秒前
24秒前
24秒前
25秒前
hxxx发布了新的文献求助10
26秒前
Kk完成签到,获得积分20
26秒前
香蕉觅云应助lingVing瑜采纳,获得10
26秒前
26秒前
嗷嗷嗷发布了新的文献求助10
27秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228477
求助须知:如何正确求助?哪些是违规求助? 2876197
关于积分的说明 8194322
捐赠科研通 2543356
什么是DOI,文献DOI怎么找? 1373691
科研通“疑难数据库(出版商)”最低求助积分说明 646816
邀请新用户注册赠送积分活动 621402