Multi-degree-of-freedom unmanned aerial vehicle control combining a hybrid brain-computer interface and visual obstacle avoidance

计算机科学 避障 接口(物质) 障碍物 计算机视觉 脑-机接口 学位(音乐) 人工智能 控制(管理) 人机交互 移动机器人 机器人 操作系统 精神科 脑电图 法学 气泡 最大气泡压力法 物理 声学 政治学 心理学
作者
Shanghong Xie,Wei Gao,Zhen Zeng,Q. M. J. Wu,Qian Huang,Nianming Ban,Qian Wu,Jiahui Pan
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108294-108294 被引量:1
标识
DOI:10.1016/j.engappai.2024.108294
摘要

The difficulty of unmanned aerial vehicle (UAV) control recently lies in multidirectional movement in 3-dimensional space, improving control accuracy and manipulation safety. To address these challenges, a UAV control system that incorporates a hybrid brain-computer interface (hBCI), gyroscope and visual obstacle avoidance based on monocular depth estimation is proposed. Approach. We propose an efficient steady-state visual evoked potential (SSVEP) classification network (CL-NET) featuring a one-dimensional convolutional neural network, a long short-term memory module and an attention module to identify the user's intention for UAV movement in the front, back, left and right directions. The take-off, landing and rising control of the UAV is realized by an electrooculogram (EOG) signal detection algorithm, a blink state detector. In addition, the UAV can fly in an oblique state and rotate according to the current head posture detected by a gyroscope. Furthermore, an improved monocular depth estimation network is employed to design the autonomous obstacle avoidance module of the UAV, ensuring the safety of the brain-controlled system in practice. Main results. The proposed CL-NET delivers an accuracy of 98.67% on the public dataset and an accuracy of 97.92% on the self-collected dataset, both of which surpass the performance of state-of-the-art models. Additionally, we set up a brain control group and a remote control group to conduct practical experiments in a realistic environment. In the experiments involving sixteen subjects, the proposed UAV control system reached an average information transfer rate (ITR) of 44.09 bits/min, and the brain control group had a lower collision rate than the remote control group. Significance. The hybrid control method ensures that the multi-degree-of-freedom (multi-DOF) UAV control system maintains outstanding performance while ensuring good safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨冀军完成签到 ,获得积分10
刚刚
乐观的海发布了新的文献求助10
刚刚
杨三多完成签到,获得积分10
2秒前
3秒前
3秒前
chen7完成签到,获得积分10
4秒前
4秒前
沐兮发布了新的文献求助10
4秒前
4秒前
彩色大碗完成签到,获得积分10
6秒前
小丸子发布了新的文献求助10
6秒前
小郭小郭完成签到,获得积分10
7秒前
8秒前
wanci应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
Hello应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得30
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
852应助科研通管家采纳,获得10
8秒前
8秒前
Hilda007应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
比个耶应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
9秒前
认真从筠完成签到,获得积分10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
dreamlightzy应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
沙心应助科研通管家采纳,获得10
9秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5223727
求助须知:如何正确求助?哪些是违规求助? 4395985
关于积分的说明 13682413
捐赠科研通 4260093
什么是DOI,文献DOI怎么找? 2337728
邀请新用户注册赠送积分活动 1335112
关于科研通互助平台的介绍 1290770