Multi-degree-of-freedom unmanned aerial vehicle control combining a hybrid brain-computer interface and visual obstacle avoidance

计算机科学 避障 接口(物质) 障碍物 计算机视觉 脑-机接口 学位(音乐) 人工智能 控制(管理) 人机交互 移动机器人 机器人 操作系统 精神科 脑电图 法学 气泡 最大气泡压力法 物理 声学 政治学 心理学
作者
Shanghong Xie,Wei Gao,Zhen Zeng,Q. M. J. Wu,Qian Huang,Nianming Ban,Qian Wu,Jiahui Pan
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108294-108294 被引量:1
标识
DOI:10.1016/j.engappai.2024.108294
摘要

The difficulty of unmanned aerial vehicle (UAV) control recently lies in multidirectional movement in 3-dimensional space, improving control accuracy and manipulation safety. To address these challenges, a UAV control system that incorporates a hybrid brain-computer interface (hBCI), gyroscope and visual obstacle avoidance based on monocular depth estimation is proposed. Approach. We propose an efficient steady-state visual evoked potential (SSVEP) classification network (CL-NET) featuring a one-dimensional convolutional neural network, a long short-term memory module and an attention module to identify the user's intention for UAV movement in the front, back, left and right directions. The take-off, landing and rising control of the UAV is realized by an electrooculogram (EOG) signal detection algorithm, a blink state detector. In addition, the UAV can fly in an oblique state and rotate according to the current head posture detected by a gyroscope. Furthermore, an improved monocular depth estimation network is employed to design the autonomous obstacle avoidance module of the UAV, ensuring the safety of the brain-controlled system in practice. Main results. The proposed CL-NET delivers an accuracy of 98.67% on the public dataset and an accuracy of 97.92% on the self-collected dataset, both of which surpass the performance of state-of-the-art models. Additionally, we set up a brain control group and a remote control group to conduct practical experiments in a realistic environment. In the experiments involving sixteen subjects, the proposed UAV control system reached an average information transfer rate (ITR) of 44.09 bits/min, and the brain control group had a lower collision rate than the remote control group. Significance. The hybrid control method ensures that the multi-degree-of-freedom (multi-DOF) UAV control system maintains outstanding performance while ensuring good safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tonyguo完成签到,获得积分10
刚刚
1秒前
1秒前
Yynlty完成签到 ,获得积分10
2秒前
情怀应助杨九斤Jenney采纳,获得10
2秒前
一杯juice发布了新的文献求助20
2秒前
3秒前
3秒前
3秒前
细腻绿柳完成签到,获得积分20
3秒前
小新发布了新的文献求助10
3秒前
东篱陶渊明完成签到,获得积分10
4秒前
4秒前
SHAO应助hm采纳,获得10
5秒前
FashionBoy应助hm采纳,获得10
5秒前
5秒前
Library发布了新的文献求助10
6秒前
赵十一完成签到,获得积分10
6秒前
科研通AI2S应助俭朴的小之采纳,获得10
6秒前
6秒前
CodeCraft应助任性的老四采纳,获得10
7秒前
一一发布了新的文献求助10
7秒前
Red发布了新的文献求助10
7秒前
7秒前
Taylor关注了科研通微信公众号
8秒前
潇洒诗云发布了新的文献求助10
8秒前
8秒前
18969431868完成签到,获得积分10
8秒前
水母鼻涕泡完成签到 ,获得积分20
9秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
ryyy发布了新的文献求助10
11秒前
meinv完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
12秒前
Erdongdong发布了新的文献求助10
12秒前
英姑应助江苏吴世勋采纳,获得20
13秒前
小苏爱学习完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5474597
求助须知:如何正确求助?哪些是违规求助? 4576314
关于积分的说明 14357911
捐赠科研通 4504323
什么是DOI,文献DOI怎么找? 2468126
邀请新用户注册赠送积分活动 1455790
关于科研通互助平台的介绍 1429726