Multi-degree-of-freedom unmanned aerial vehicle control combining a hybrid brain-computer interface and visual obstacle avoidance

计算机科学 避障 接口(物质) 障碍物 计算机视觉 脑-机接口 学位(音乐) 人工智能 控制(管理) 人机交互 移动机器人 机器人 操作系统 精神科 脑电图 法学 气泡 最大气泡压力法 物理 声学 政治学 心理学
作者
Shanghong Xie,Wei Gao,Zhen Zeng,Q. M. J. Wu,Qian Huang,Nianming Ban,Qian Wu,Jiahui Pan
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108294-108294 被引量:1
标识
DOI:10.1016/j.engappai.2024.108294
摘要

The difficulty of unmanned aerial vehicle (UAV) control recently lies in multidirectional movement in 3-dimensional space, improving control accuracy and manipulation safety. To address these challenges, a UAV control system that incorporates a hybrid brain-computer interface (hBCI), gyroscope and visual obstacle avoidance based on monocular depth estimation is proposed. Approach. We propose an efficient steady-state visual evoked potential (SSVEP) classification network (CL-NET) featuring a one-dimensional convolutional neural network, a long short-term memory module and an attention module to identify the user's intention for UAV movement in the front, back, left and right directions. The take-off, landing and rising control of the UAV is realized by an electrooculogram (EOG) signal detection algorithm, a blink state detector. In addition, the UAV can fly in an oblique state and rotate according to the current head posture detected by a gyroscope. Furthermore, an improved monocular depth estimation network is employed to design the autonomous obstacle avoidance module of the UAV, ensuring the safety of the brain-controlled system in practice. Main results. The proposed CL-NET delivers an accuracy of 98.67% on the public dataset and an accuracy of 97.92% on the self-collected dataset, both of which surpass the performance of state-of-the-art models. Additionally, we set up a brain control group and a remote control group to conduct practical experiments in a realistic environment. In the experiments involving sixteen subjects, the proposed UAV control system reached an average information transfer rate (ITR) of 44.09 bits/min, and the brain control group had a lower collision rate than the remote control group. Significance. The hybrid control method ensures that the multi-degree-of-freedom (multi-DOF) UAV control system maintains outstanding performance while ensuring good safety.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
大模型应助小文采纳,获得10
1秒前
Biu完成签到,获得积分10
2秒前
2秒前
3秒前
LLF发布了新的文献求助10
3秒前
陈宁佳关注了科研通微信公众号
3秒前
失眠的血茗应助wang采纳,获得10
3秒前
4秒前
感动迎蕾完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
安于一隅发布了新的文献求助10
4秒前
徐hhh发布了新的文献求助10
5秒前
任意门发布了新的文献求助10
5秒前
5秒前
HJJHJH发布了新的文献求助10
5秒前
Akim应助羊村你喜哥采纳,获得10
5秒前
5秒前
5秒前
感动含莲发布了新的文献求助15
6秒前
6秒前
7秒前
DTOU发布了新的文献求助10
7秒前
7秒前
甜蜜的马里奥完成签到,获得积分10
7秒前
8秒前
李白白完成签到,获得积分10
8秒前
9秒前
FashionBoy应助ZHI采纳,获得10
10秒前
语安发布了新的文献求助10
10秒前
10秒前
科研通AI6.1应助sunshine采纳,获得50
10秒前
11秒前
超帅的语雪完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
三点一共发布了新的文献求助10
12秒前
学不通发布了新的文献求助30
12秒前
Lucas应助qingchao采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5769552
求助须知:如何正确求助?哪些是违规求助? 5580237
关于积分的说明 15422059
捐赠科研通 4903244
什么是DOI,文献DOI怎么找? 2638138
邀请新用户注册赠送积分活动 1586036
关于科研通互助平台的介绍 1541128