Listwise Generative Retrieval Models via a Sequential Learning Process

计算机科学 生成语法 过程(计算) 生成模型 情报检索 人工智能 机器学习 自然语言处理 程序设计语言
作者
Yubao Tang,Ruqing Zhang,Jiafeng Guo,Maarten de Rijke,Wei Chen,Xueqi Cheng
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:42 (5): 1-31
标识
DOI:10.1145/3653712
摘要

Recently, a novel generative retrieval (GR) paradigm has been proposed, where a single sequence-to-sequence model is learned to directly generate a list of relevant document identifiers (docids) given a query. Existing GR models commonly employ maximum likelihood estimation (MLE) for optimization: This involves maximizing the likelihood of a single relevant docid given an input query, with the assumption that the likelihood for each docid is independent of the other docids in the list. We refer to these models as the pointwise approach in this article. While the pointwise approach has been shown to be effective in the context of GR, it is considered sub-optimal due to its disregard for the fundamental principle that ranking involves making predictions about lists. In this article, we address this limitation by introducing an alternative listwise approach, which empowers the GR model to optimize the relevance at the docid list level. Specifically, we view the generation of a ranked docid list as a sequence learning process: At each step, we learn a subset of parameters that maximizes the corresponding generation likelihood of the i th docid given the (preceding) top i -1 docids. To formalize the sequence learning process, we design a positional conditional probability for GR. To alleviate the potential impact of beam search on the generation quality during inference, we perform relevance calibration on the generation likelihood of model-generated docids according to relevance grades. We conduct extensive experiments on representative binary and multi-graded relevance datasets. Our empirical results demonstrate that our method outperforms state-of-the-art GR baselines in terms of retrieval performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助球球了采纳,获得10
刚刚
优雅小霜发布了新的文献求助10
刚刚
星沉静默完成签到 ,获得积分10
刚刚
搜集达人应助yxy采纳,获得10
1秒前
流川枫发布了新的文献求助10
2秒前
russing完成签到 ,获得积分10
2秒前
张础锐完成签到,获得积分10
3秒前
沉静海安完成签到,获得积分10
3秒前
苗条的小蜜蜂完成签到 ,获得积分10
4秒前
万能图书馆应助westbobo采纳,获得10
4秒前
li完成签到,获得积分20
5秒前
lin完成签到,获得积分10
6秒前
Lucas应助XJ采纳,获得10
6秒前
今天不学习明天变垃圾完成签到,获得积分10
6秒前
心灵美的修洁完成签到 ,获得积分10
6秒前
爱听歌的从筠完成签到,获得积分10
7秒前
9秒前
1997_Aris发布了新的文献求助10
9秒前
cc完成签到,获得积分10
10秒前
li发布了新的文献求助10
10秒前
打打应助月倚樱落时采纳,获得10
11秒前
踏雪寻梅完成签到,获得积分10
11秒前
王不王发布了新的文献求助10
11秒前
370完成签到,获得积分10
11秒前
研友_VZG7GZ应助decademe采纳,获得10
12秒前
liuxinying完成签到,获得积分10
12秒前
12秒前
13秒前
14秒前
111完成签到,获得积分10
14秒前
卫海亦完成签到,获得积分10
14秒前
小W爱吃梨完成签到,获得积分10
15秒前
Pytong完成签到,获得积分20
15秒前
鲸落完成签到,获得积分10
15秒前
鸽子的迷信完成签到,获得积分10
16秒前
16秒前
16秒前
16秒前
liuxinying发布了新的文献求助10
17秒前
热心克莉丝完成签到,获得积分10
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986586
求助须知:如何正确求助?哪些是违规求助? 3529069
关于积分的说明 11242999
捐赠科研通 3267514
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881175
科研通“疑难数据库(出版商)”最低求助积分说明 808582