已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Listwise Generative Retrieval Models via a Sequential Learning Process

计算机科学 生成语法 过程(计算) 生成模型 情报检索 人工智能 机器学习 自然语言处理 程序设计语言
作者
Yubao Tang,Ruqing Zhang,Jiafeng Guo,Maarten de Rijke,Wei Chen,Xueqi Cheng
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:42 (5): 1-31
标识
DOI:10.1145/3653712
摘要

Recently, a novel generative retrieval (GR) paradigm has been proposed, where a single sequence-to-sequence model is learned to directly generate a list of relevant document identifiers (docids) given a query. Existing GR models commonly employ maximum likelihood estimation (MLE) for optimization: This involves maximizing the likelihood of a single relevant docid given an input query, with the assumption that the likelihood for each docid is independent of the other docids in the list. We refer to these models as the pointwise approach in this article. While the pointwise approach has been shown to be effective in the context of GR, it is considered sub-optimal due to its disregard for the fundamental principle that ranking involves making predictions about lists. In this article, we address this limitation by introducing an alternative listwise approach, which empowers the GR model to optimize the relevance at the docid list level. Specifically, we view the generation of a ranked docid list as a sequence learning process: At each step, we learn a subset of parameters that maximizes the corresponding generation likelihood of the i th docid given the (preceding) top i -1 docids. To formalize the sequence learning process, we design a positional conditional probability for GR. To alleviate the potential impact of beam search on the generation quality during inference, we perform relevance calibration on the generation likelihood of model-generated docids according to relevance grades. We conduct extensive experiments on representative binary and multi-graded relevance datasets. Our empirical results demonstrate that our method outperforms state-of-the-art GR baselines in terms of retrieval performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
momi发布了新的文献求助10
2秒前
张可完成签到 ,获得积分10
3秒前
高屋建瓴完成签到,获得积分10
8秒前
无花果应助momi采纳,获得50
10秒前
菜芽君完成签到,获得积分10
11秒前
爆米花应助leslie采纳,获得10
16秒前
wanci应助leslie采纳,获得10
16秒前
科研通AI6应助leslie采纳,获得10
16秒前
WhiteCaramel完成签到 ,获得积分10
17秒前
爱听歌的火火完成签到,获得积分20
19秒前
小栗子完成签到,获得积分10
21秒前
23秒前
徐biao发布了新的文献求助20
23秒前
鹿小新发布了新的文献求助10
27秒前
jyy完成签到,获得积分10
28秒前
蛙蛙完成签到,获得积分10
29秒前
华仔应助徐biao采纳,获得10
37秒前
绮烟完成签到 ,获得积分10
38秒前
39秒前
酷酷以柳完成签到,获得积分10
40秒前
Criminology34举报无风求助涉嫌违规
41秒前
月儿完成签到 ,获得积分10
49秒前
51秒前
53秒前
59秒前
阳阳完成签到,获得积分10
1分钟前
moiumuio完成签到,获得积分10
1分钟前
1分钟前
郝誉发布了新的文献求助10
1分钟前
cenghao发布了新的文献求助10
1分钟前
圈哥完成签到 ,获得积分10
1分钟前
香樟沐雪完成签到 ,获得积分10
1分钟前
one应助Fionn采纳,获得10
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
思源应助科研通管家采纳,获得10
1分钟前
无极微光应助科研通管家采纳,获得20
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590260
求助须知:如何正确求助?哪些是违规求助? 4674687
关于积分的说明 14795015
捐赠科研通 4631029
什么是DOI,文献DOI怎么找? 2532659
邀请新用户注册赠送积分活动 1501235
关于科研通互助平台的介绍 1468581