Ensembled Traffic-Aware Transformer-Based Predictive Energy Management for Electrified Vehicles

汽车工程 变压器 能源管理 运输工程 计算机科学 工程类 能量(信号处理) 电气工程 电压 数学 统计
作者
Jingda Wu,Zhongbao Wei,Hongwen He,Henglai Wei,Shuangqi Li,Fei Gao
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:1
标识
DOI:10.1109/tits.2024.3375331
摘要

The predictive energy management strategy (PEMS) offers potential advantages in enhancing the driving economy of electrified vehicles using vehicle speed prediction. However, realizing accurate predictions in practical contexts remains a challenge. Departing from conventional PEMS that rely on historical speed or static traffic data, we introduce a real-time traffic-aware PEMS for improved performance. To better understand the interplay between the host vehicle and its surrounding traffic, we use a Transformer network as the predictor that employs the speeds and relative distances of the surrounding six vehicles to forecast future speed sequences for the host vehicle. To augment this data-driven approach, we develop a dual-predictor strategy based on the deep ensemble technique. This strategy measures the Transformer's output uncertainty to gauge prediction reliability and introduce an automated threshold mechanism. Based on this threshold and real-time uncertainties, the strategy chooses between the Transformer and an exponential predictor to achieve improved prediction outcomes. A reinforcement learning method is integrated as the PEMS optimizer. For validation, we generate training data with traffic information based on the next generation simulation (NGSIM) dataset and create a test scenario in the SUMO simulator. The results confirm that speed predictions based on real-time traffic data surpass traditional PEMS, either directly inputting traffic data or excluding it. The Transformer predictor significantly outperforms the state-of-the-art predictor. Importantly, our dual-predictor design amplifies prediction accuracy by 27.2% against the standard single-network predictor under non-training conditions. Overall, our PEMS enhances driving economy by 11.1% relative to traffic-unaware models and 8.0% over non-Transformer schemes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
超级月光发布了新的文献求助10
1秒前
1秒前
Tonson完成签到,获得积分10
1秒前
cccccttt发布了新的文献求助10
1秒前
2秒前
胡一一完成签到,获得积分20
2秒前
liwenhao应助烽火残心采纳,获得10
2秒前
2秒前
2秒前
少年应助周旭采纳,获得10
3秒前
3秒前
去码头整点薯条完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
shaojing发布了新的文献求助10
3秒前
笑点低代萱完成签到,获得积分10
4秒前
科目三应助11采纳,获得10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
ZhijunXiang完成签到,获得积分10
4秒前
corazon完成签到 ,获得积分10
4秒前
5秒前
5秒前
斯文败类应助武明进采纳,获得10
5秒前
6秒前
6秒前
耳东完成签到 ,获得积分10
6秒前
7秒前
阿吟发布了新的文献求助10
7秒前
7秒前
摩擦电发布了新的文献求助10
7秒前
灯座发布了新的文献求助10
8秒前
Frank完成签到 ,获得积分10
8秒前
周老师完成签到 ,获得积分10
8秒前
九十发布了新的文献求助10
8秒前
无花果应助胡一一采纳,获得10
8秒前
时光倒流的鱼完成签到,获得积分10
8秒前
卡皮巴拉yuan应助阿哈采纳,获得10
9秒前
新新完成签到,获得积分10
9秒前
Lucas应助韩医生口腔采纳,获得10
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699262
求助须知:如何正确求助?哪些是违规求助? 5129994
关于积分的说明 15225198
捐赠科研通 4854268
什么是DOI,文献DOI怎么找? 2604550
邀请新用户注册赠送积分活动 1556014
关于科研通互助平台的介绍 1514297