Ensembled Traffic-Aware Transformer-Based Predictive Energy Management for Electrified Vehicles

汽车工程 变压器 能源管理 运输工程 计算机科学 工程类 能量(信号处理) 电气工程 电压 数学 统计
作者
Jingda Wu,Zhongbao Wei,Hongwen He,Henglai Wei,Shuangqi Li,Fei Gao
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:1
标识
DOI:10.1109/tits.2024.3375331
摘要

The predictive energy management strategy (PEMS) offers potential advantages in enhancing the driving economy of electrified vehicles using vehicle speed prediction. However, realizing accurate predictions in practical contexts remains a challenge. Departing from conventional PEMS that rely on historical speed or static traffic data, we introduce a real-time traffic-aware PEMS for improved performance. To better understand the interplay between the host vehicle and its surrounding traffic, we use a Transformer network as the predictor that employs the speeds and relative distances of the surrounding six vehicles to forecast future speed sequences for the host vehicle. To augment this data-driven approach, we develop a dual-predictor strategy based on the deep ensemble technique. This strategy measures the Transformer's output uncertainty to gauge prediction reliability and introduce an automated threshold mechanism. Based on this threshold and real-time uncertainties, the strategy chooses between the Transformer and an exponential predictor to achieve improved prediction outcomes. A reinforcement learning method is integrated as the PEMS optimizer. For validation, we generate training data with traffic information based on the next generation simulation (NGSIM) dataset and create a test scenario in the SUMO simulator. The results confirm that speed predictions based on real-time traffic data surpass traditional PEMS, either directly inputting traffic data or excluding it. The Transformer predictor significantly outperforms the state-of-the-art predictor. Importantly, our dual-predictor design amplifies prediction accuracy by 27.2% against the standard single-network predictor under non-training conditions. Overall, our PEMS enhances driving economy by 11.1% relative to traffic-unaware models and 8.0% over non-Transformer schemes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默默松鼠完成签到,获得积分10
1秒前
自由如天完成签到,获得积分10
2秒前
无限的可乐完成签到,获得积分10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
11完成签到 ,获得积分10
2秒前
Frank应助科研通管家采纳,获得10
2秒前
萧萧应助科研通管家采纳,获得10
2秒前
cccjjjhhh完成签到,获得积分10
2秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
Frank应助科研通管家采纳,获得10
3秒前
qqq完成签到 ,获得积分10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
求助人员应助科研通管家采纳,获得10
3秒前
LIZHEN完成签到,获得积分10
3秒前
Larry1226完成签到,获得积分10
3秒前
Frank应助科研通管家采纳,获得10
4秒前
zgrmws应助科研通管家采纳,获得20
4秒前
求助人员应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
w尘完成签到 ,获得积分10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
Frank应助科研通管家采纳,获得10
4秒前
萧萧应助科研通管家采纳,获得10
5秒前
宜菏发布了新的文献求助10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
Frank应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
甲壳虫发布了新的文献求助10
5秒前
Frank应助科研通管家采纳,获得10
5秒前
Frank应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
blackddl应助科研通管家采纳,获得150
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
rayqiang完成签到,获得积分0
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671659
求助须知:如何正确求助?哪些是违规求助? 4921045
关于积分的说明 15135488
捐赠科研通 4830525
什么是DOI,文献DOI怎么找? 2587125
邀请新用户注册赠送积分活动 1540733
关于科研通互助平台的介绍 1499131