Ensembled Traffic-Aware Transformer-Based Predictive Energy Management for Electrified Vehicles

汽车工程 变压器 能源管理 运输工程 计算机科学 工程类 能量(信号处理) 电气工程 电压 数学 统计
作者
Jingda Wu,Zhongbao Wei,Hongwen He,Henglai Wei,Shuangqi Li,Fei Gao
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:1
标识
DOI:10.1109/tits.2024.3375331
摘要

The predictive energy management strategy (PEMS) offers potential advantages in enhancing the driving economy of electrified vehicles using vehicle speed prediction. However, realizing accurate predictions in practical contexts remains a challenge. Departing from conventional PEMS that rely on historical speed or static traffic data, we introduce a real-time traffic-aware PEMS for improved performance. To better understand the interplay between the host vehicle and its surrounding traffic, we use a Transformer network as the predictor that employs the speeds and relative distances of the surrounding six vehicles to forecast future speed sequences for the host vehicle. To augment this data-driven approach, we develop a dual-predictor strategy based on the deep ensemble technique. This strategy measures the Transformer's output uncertainty to gauge prediction reliability and introduce an automated threshold mechanism. Based on this threshold and real-time uncertainties, the strategy chooses between the Transformer and an exponential predictor to achieve improved prediction outcomes. A reinforcement learning method is integrated as the PEMS optimizer. For validation, we generate training data with traffic information based on the next generation simulation (NGSIM) dataset and create a test scenario in the SUMO simulator. The results confirm that speed predictions based on real-time traffic data surpass traditional PEMS, either directly inputting traffic data or excluding it. The Transformer predictor significantly outperforms the state-of-the-art predictor. Importantly, our dual-predictor design amplifies prediction accuracy by 27.2% against the standard single-network predictor under non-training conditions. Overall, our PEMS enhances driving economy by 11.1% relative to traffic-unaware models and 8.0% over non-Transformer schemes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助EnJay0528采纳,获得10
刚刚
慕青应助mingshi采纳,获得10
1秒前
1秒前
2秒前
张煜禾完成签到,获得积分10
2秒前
上官若男应助现代的天与采纳,获得10
2秒前
3秒前
aicxx发布了新的文献求助20
3秒前
3秒前
3秒前
3秒前
4秒前
无极微光应助天真三问采纳,获得20
5秒前
5秒前
小茗同学完成签到,获得积分10
5秒前
5秒前
情怀应助桢桢树采纳,获得10
5秒前
5秒前
guyankuan发布了新的文献求助10
6秒前
又日新发布了新的文献求助10
6秒前
7秒前
8秒前
ZZZ发布了新的文献求助10
8秒前
蓝天应助聪明的水母采纳,获得10
8秒前
馨橣完成签到,获得积分20
8秒前
王三发布了新的文献求助10
8秒前
xlj发布了新的文献求助10
9秒前
冰刀发布了新的文献求助10
9秒前
谨慎啤酒发布了新的文献求助10
10秒前
天阳发布了新的文献求助10
10秒前
儒雅的蜜粉完成签到,获得积分10
11秒前
11秒前
Aria完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
余姚发布了新的文献求助10
12秒前
12秒前
义气莫茗完成签到 ,获得积分10
12秒前
平常冬萱完成签到,获得积分10
12秒前
zier完成签到 ,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784063
求助须知:如何正确求助?哪些是违规求助? 5680443
关于积分的说明 15462954
捐赠科研通 4913367
什么是DOI,文献DOI怎么找? 2644620
邀请新用户注册赠送积分活动 1592452
关于科研通互助平台的介绍 1547078