Ensembled Traffic-Aware Transformer-Based Predictive Energy Management for Electrified Vehicles

汽车工程 变压器 能源管理 运输工程 计算机科学 工程类 能量(信号处理) 电气工程 电压 数学 统计
作者
Jingda Wu,Zhongbao Wei,Hongwen He,Henglai Wei,Shuangqi Li,Fei Gao
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:1
标识
DOI:10.1109/tits.2024.3375331
摘要

The predictive energy management strategy (PEMS) offers potential advantages in enhancing the driving economy of electrified vehicles using vehicle speed prediction. However, realizing accurate predictions in practical contexts remains a challenge. Departing from conventional PEMS that rely on historical speed or static traffic data, we introduce a real-time traffic-aware PEMS for improved performance. To better understand the interplay between the host vehicle and its surrounding traffic, we use a Transformer network as the predictor that employs the speeds and relative distances of the surrounding six vehicles to forecast future speed sequences for the host vehicle. To augment this data-driven approach, we develop a dual-predictor strategy based on the deep ensemble technique. This strategy measures the Transformer's output uncertainty to gauge prediction reliability and introduce an automated threshold mechanism. Based on this threshold and real-time uncertainties, the strategy chooses between the Transformer and an exponential predictor to achieve improved prediction outcomes. A reinforcement learning method is integrated as the PEMS optimizer. For validation, we generate training data with traffic information based on the next generation simulation (NGSIM) dataset and create a test scenario in the SUMO simulator. The results confirm that speed predictions based on real-time traffic data surpass traditional PEMS, either directly inputting traffic data or excluding it. The Transformer predictor significantly outperforms the state-of-the-art predictor. Importantly, our dual-predictor design amplifies prediction accuracy by 27.2% against the standard single-network predictor under non-training conditions. Overall, our PEMS enhances driving economy by 11.1% relative to traffic-unaware models and 8.0% over non-Transformer schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饱满破茧完成签到,获得积分10
刚刚
俞渝发布了新的文献求助30
刚刚
Owen应助笨笨从凝采纳,获得10
刚刚
刚刚
1秒前
爱静静应助务实的听筠采纳,获得10
1秒前
3秒前
HH完成签到,获得积分10
3秒前
学术安陵容完成签到,获得积分10
4秒前
温暖南莲应助零九采纳,获得30
4秒前
111发布了新的文献求助10
4秒前
hsy发布了新的文献求助10
5秒前
6秒前
科研小白发布了新的文献求助10
7秒前
7秒前
Grow发布了新的文献求助10
7秒前
小马甲应助hsy采纳,获得10
8秒前
俞渝完成签到,获得积分20
8秒前
务实的听筠完成签到,获得积分10
9秒前
yue发布了新的文献求助10
10秒前
xdy发布了新的文献求助10
12秒前
13秒前
玻尿酸发布了新的文献求助10
16秒前
16秒前
lvxsit发布了新的文献求助10
17秒前
18秒前
19秒前
世佳何完成签到,获得积分10
21秒前
充电宝应助自由青柏采纳,获得10
21秒前
24秒前
Grow完成签到,获得积分10
25秒前
ShowMaker应助世佳何采纳,获得30
25秒前
wanci应助科研通管家采纳,获得10
27秒前
Jasper应助科研通管家采纳,获得10
28秒前
orixero应助科研通管家采纳,获得10
28秒前
浅尝离白应助科研通管家采纳,获得30
28秒前
小二郎应助科研通管家采纳,获得10
28秒前
28秒前
lvxsit完成签到,获得积分10
28秒前
wanci应助Qi采纳,获得10
29秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150257
求助须知:如何正确求助?哪些是违规求助? 2801405
关于积分的说明 7844390
捐赠科研通 2458892
什么是DOI,文献DOI怎么找? 1308773
科研通“疑难数据库(出版商)”最低求助积分说明 628562
版权声明 601721