Ensembled Traffic-Aware Transformer-Based Predictive Energy Management for Electrified Vehicles

汽车工程 变压器 能源管理 运输工程 计算机科学 工程类 能量(信号处理) 电气工程 电压 数学 统计
作者
Jingda Wu,Zhongbao Wei,Hongwen He,Henglai Wei,Shuangqi Li,Fei Gao
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:1
标识
DOI:10.1109/tits.2024.3375331
摘要

The predictive energy management strategy (PEMS) offers potential advantages in enhancing the driving economy of electrified vehicles using vehicle speed prediction. However, realizing accurate predictions in practical contexts remains a challenge. Departing from conventional PEMS that rely on historical speed or static traffic data, we introduce a real-time traffic-aware PEMS for improved performance. To better understand the interplay between the host vehicle and its surrounding traffic, we use a Transformer network as the predictor that employs the speeds and relative distances of the surrounding six vehicles to forecast future speed sequences for the host vehicle. To augment this data-driven approach, we develop a dual-predictor strategy based on the deep ensemble technique. This strategy measures the Transformer's output uncertainty to gauge prediction reliability and introduce an automated threshold mechanism. Based on this threshold and real-time uncertainties, the strategy chooses between the Transformer and an exponential predictor to achieve improved prediction outcomes. A reinforcement learning method is integrated as the PEMS optimizer. For validation, we generate training data with traffic information based on the next generation simulation (NGSIM) dataset and create a test scenario in the SUMO simulator. The results confirm that speed predictions based on real-time traffic data surpass traditional PEMS, either directly inputting traffic data or excluding it. The Transformer predictor significantly outperforms the state-of-the-art predictor. Importantly, our dual-predictor design amplifies prediction accuracy by 27.2% against the standard single-network predictor under non-training conditions. Overall, our PEMS enhances driving economy by 11.1% relative to traffic-unaware models and 8.0% over non-Transformer schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助期刊采纳,获得10
1秒前
钢蹦儿发布了新的文献求助10
2秒前
852应助科研通管家采纳,获得10
2秒前
精明凡双应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得30
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
尊敬忆秋应助科研通管家采纳,获得10
3秒前
Serendipity应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
王大发布了新的文献求助10
3秒前
所所应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得30
3秒前
JamesPei应助科研通管家采纳,获得30
3秒前
浮游应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得30
4秒前
4秒前
4秒前
4秒前
5秒前
扶溪筠完成签到,获得积分10
5秒前
laoji完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
nannan发布了新的文献求助10
7秒前
childe完成签到,获得积分10
9秒前
laoji发布了新的文献求助10
9秒前
9秒前
10秒前
不黑完成签到,获得积分10
10秒前
尹雪儿完成签到,获得积分10
11秒前
琉璃天关注了科研通微信公众号
13秒前
13秒前
lkl发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4587108
求助须知:如何正确求助?哪些是违规求助? 4003153
关于积分的说明 12392424
捐赠科研通 3679551
什么是DOI,文献DOI怎么找? 2028183
邀请新用户注册赠送积分活动 1061667
科研通“疑难数据库(出版商)”最低求助积分说明 947892