Ensembled Traffic-Aware Transformer-Based Predictive Energy Management for Electrified Vehicles

汽车工程 变压器 能源管理 运输工程 计算机科学 工程类 能量(信号处理) 电气工程 电压 数学 统计
作者
Jingda Wu,Zhongbao Wei,Hongwen He,Henglai Wei,Shuangqi Li,Fei Gao
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:1
标识
DOI:10.1109/tits.2024.3375331
摘要

The predictive energy management strategy (PEMS) offers potential advantages in enhancing the driving economy of electrified vehicles using vehicle speed prediction. However, realizing accurate predictions in practical contexts remains a challenge. Departing from conventional PEMS that rely on historical speed or static traffic data, we introduce a real-time traffic-aware PEMS for improved performance. To better understand the interplay between the host vehicle and its surrounding traffic, we use a Transformer network as the predictor that employs the speeds and relative distances of the surrounding six vehicles to forecast future speed sequences for the host vehicle. To augment this data-driven approach, we develop a dual-predictor strategy based on the deep ensemble technique. This strategy measures the Transformer's output uncertainty to gauge prediction reliability and introduce an automated threshold mechanism. Based on this threshold and real-time uncertainties, the strategy chooses between the Transformer and an exponential predictor to achieve improved prediction outcomes. A reinforcement learning method is integrated as the PEMS optimizer. For validation, we generate training data with traffic information based on the next generation simulation (NGSIM) dataset and create a test scenario in the SUMO simulator. The results confirm that speed predictions based on real-time traffic data surpass traditional PEMS, either directly inputting traffic data or excluding it. The Transformer predictor significantly outperforms the state-of-the-art predictor. Importantly, our dual-predictor design amplifies prediction accuracy by 27.2% against the standard single-network predictor under non-training conditions. Overall, our PEMS enhances driving economy by 11.1% relative to traffic-unaware models and 8.0% over non-Transformer schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助开心小兔子采纳,获得30
1秒前
SciGPT应助扑火退羽采纳,获得10
1秒前
芒果布丁完成签到 ,获得积分10
1秒前
丹dan完成签到,获得积分10
1秒前
干净映天发布了新的文献求助10
1秒前
沙珠发布了新的文献求助10
2秒前
00发布了新的文献求助10
3秒前
科研通AI6应助鹤轸采纳,获得10
3秒前
饿崽要吃饭完成签到,获得积分10
5秒前
西米发布了新的文献求助10
5秒前
5秒前
欢呼的忘幽完成签到,获得积分10
6秒前
852应助啊哈采纳,获得10
6秒前
6秒前
千北发布了新的文献求助10
7秒前
justdoit发布了新的文献求助20
9秒前
01完成签到 ,获得积分10
9秒前
Orange应助哈哈采纳,获得20
9秒前
唠叨的凌雪完成签到,获得积分10
10秒前
10秒前
11秒前
搜集达人应助彭彭采纳,获得10
11秒前
Wang发布了新的文献求助10
11秒前
科研通AI6应助liu采纳,获得10
12秒前
Steffi完成签到,获得积分10
12秒前
wei完成签到,获得积分10
12秒前
13秒前
13秒前
深情安青应助鹤轸采纳,获得10
13秒前
14秒前
nenoaowu发布了新的文献求助10
16秒前
寒冷河马发布了新的文献求助10
16秒前
LX完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
NexusExplorer应助秀丽如松采纳,获得10
17秒前
17秒前
zhangyx发布了新的文献求助10
17秒前
20秒前
21秒前
CipherSage应助科研通管家采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5420029
求助须知:如何正确求助?哪些是违规求助? 4535248
关于积分的说明 14148708
捐赠科研通 4452114
什么是DOI,文献DOI怎么找? 2441989
邀请新用户注册赠送积分活动 1433552
关于科研通互助平台的介绍 1410775