Ensembled Traffic-Aware Transformer-Based Predictive Energy Management for Electrified Vehicles

汽车工程 变压器 能源管理 运输工程 计算机科学 工程类 能量(信号处理) 电气工程 电压 数学 统计
作者
Jingda Wu,Zhongbao Wei,Hongwen He,Henglai Wei,Shuangqi Li,Fei Gao
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:1
标识
DOI:10.1109/tits.2024.3375331
摘要

The predictive energy management strategy (PEMS) offers potential advantages in enhancing the driving economy of electrified vehicles using vehicle speed prediction. However, realizing accurate predictions in practical contexts remains a challenge. Departing from conventional PEMS that rely on historical speed or static traffic data, we introduce a real-time traffic-aware PEMS for improved performance. To better understand the interplay between the host vehicle and its surrounding traffic, we use a Transformer network as the predictor that employs the speeds and relative distances of the surrounding six vehicles to forecast future speed sequences for the host vehicle. To augment this data-driven approach, we develop a dual-predictor strategy based on the deep ensemble technique. This strategy measures the Transformer's output uncertainty to gauge prediction reliability and introduce an automated threshold mechanism. Based on this threshold and real-time uncertainties, the strategy chooses between the Transformer and an exponential predictor to achieve improved prediction outcomes. A reinforcement learning method is integrated as the PEMS optimizer. For validation, we generate training data with traffic information based on the next generation simulation (NGSIM) dataset and create a test scenario in the SUMO simulator. The results confirm that speed predictions based on real-time traffic data surpass traditional PEMS, either directly inputting traffic data or excluding it. The Transformer predictor significantly outperforms the state-of-the-art predictor. Importantly, our dual-predictor design amplifies prediction accuracy by 27.2% against the standard single-network predictor under non-training conditions. Overall, our PEMS enhances driving economy by 11.1% relative to traffic-unaware models and 8.0% over non-Transformer schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
luo发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
1秒前
小马甲应助lingo采纳,获得10
2秒前
2秒前
2秒前
2秒前
3秒前
淡淡涫发布了新的文献求助10
3秒前
浅尝离白发布了新的文献求助10
4秒前
浅尝离白发布了新的文献求助10
4秒前
浅尝离白发布了新的文献求助10
4秒前
浅尝离白发布了新的文献求助10
4秒前
浅尝离白发布了新的文献求助10
4秒前
浅尝离白发布了新的文献求助10
4秒前
浅尝离白发布了新的文献求助10
4秒前
浅尝离白发布了新的文献求助10
4秒前
LAMO完成签到,获得积分10
5秒前
Akim应助思维隋采纳,获得10
5秒前
浅尝离白发布了新的文献求助10
5秒前
浅尝离白发布了新的文献求助10
5秒前
5秒前
Lan发布了新的文献求助10
7秒前
你是谁完成签到,获得积分10
10秒前
华仔应助无误采纳,获得10
10秒前
11秒前
星辰大海应助难过的蘑菇采纳,获得10
12秒前
xiaohong发布了新的文献求助10
12秒前
13秒前
糟糕的日记本完成签到,获得积分20
14秒前
14秒前
15秒前
15秒前
16秒前
16秒前
18秒前
18秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979779
求助须知:如何正确求助?哪些是违规求助? 3523794
关于积分的说明 11218782
捐赠科研通 3261278
什么是DOI,文献DOI怎么找? 1800526
邀请新用户注册赠送积分活动 879143
科研通“疑难数据库(出版商)”最低求助积分说明 807182