电催化剂
材料科学
析氧
分解水
合金
电解水
电解
电流密度
电极
催化作用
制氢
碱性水电解
化学工程
杂原子
纳米技术
冶金
电化学
电解质
物理化学
戒指(化学)
生物化学
有机化学
光催化
工程类
量子力学
物理
化学
作者
Adeela Nairan,Zhuo Feng,Ruiming Zheng,Usman Khan,Junkuo Gao
标识
DOI:10.1002/adma.202401448
摘要
Abstract The amelioration of brilliantly effective electrocatalysts working at high current density for the oxygen evolution reaction (OER) is imperative for cost‐efficient electrochemical hydrogen production. Yet, the kinetically sluggish and unstable catalysts remain elusive to large‐scale hydrogen (H 2 ) generation for industrial applications. Herein, a new strategy is demonstrated to significantly enhance the intrinsic activity of Ni 1‐x Fe x nanochain arrays through a trace proportion of heteroatom phosphorus doping that permits robust water splitting at an extremely large current density of 1000 and 2000 mA cm −2 for 760 h. The in situ formation of Ni 2 P and Ni 5 P 4 on Ni 1‐x Fe x nanochain arrays surface and hierarchical geometry of the electrode significantly promote the reaction kinetics and OER activity. The OER electrode provides exceptionally low overpotentials of 222 and 327 mV at current densities of 10 and 2000 mA cm −2 in alkaline media, dramatically lower than benchmark IrO 2 and is among the most active catalysts yet reported. Remarkably, the alkaline electrolyzer renders a low voltage of 1.75 V at a large current density of 1000 mA cm −2 , indicating outperformed overall water splitting. The electrochemical fingerprints demonstrate vital progress toward large‐scale H 2 production for industrial water electrolysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI