无症状的
接种疫苗
人口
传输(电信)
拉伤
流行病学
传输速率
病毒学
流行病模型
医学
人口学
环境卫生
内科学
电气工程
工程类
社会学
作者
Olusegun Michael Otunuga,Amanda Yu
标识
DOI:10.1016/j.idm.2023.05.010
摘要
A vaccine breakthrough infection and a rebound infection cases of COVID-19 are studied and analyzed for the ten U.S. Department of Health and Human Services (HHS) regions and the United States as a nation in this work. An innovative multi-strain susceptible-vaccinated-exposed-asymptomatic-symptomatic-recovered (SVEAIR) epidemic model is developed for this purpose for a population assumed to be susceptible to n-different variants of the disease, and those who are vaccinated and recovered from a specific strain k(k ≤ n) of the disease are immune to present strain and its predecessors j = 1, 2, …, k, but can still be infected by newer emerging strains j = k + 1, k + 2, …, n. The model is used to estimate epidemiological parameters, namely, the latent and infectious periods, the transmission rates, vaccination rates, recovery rates for each of the Delta B.1.617.2, Omicron B.1.1.529, and lineages BA.2, BA.2.12.1, BA.4, BA.5, BA.1.1, BA.4.6, and BA.5.2.6 for the United States and for each of the ten HHS regions. The transmission rate is estimated for both the asymptomatic and symptomatic cases. The effect of vaccines on each strain is analyzed. Condition that guarantees existence of an endemic with certain number of strains is derived and used to describe the endemic state of the population.
科研通智能强力驱动
Strongly Powered by AbleSci AI