Linking employees’ challenge-hindrance appraisals toward AI to service performance: the influences of job crafting, job insecurity and AI knowledge

心理学 工作表现 工作态度 服务(商务) 社会心理学 知识管理 营销 工作满意度 业务 计算机科学
作者
Changqing He,Rongrong Teng,Jun Song
出处
期刊:International Journal of Contemporary Hospitality Management [Emerald (MCB UP)]
卷期号:36 (3): 975-994 被引量:28
标识
DOI:10.1108/ijchm-07-2022-0848
摘要

Purpose This study aims to explore the associations linking employees’ challenge-hindrance appraisals toward artificial intelligence (AI) to service performance while considering the dual mediating roles of job crafting and job insecurity, as well as the moderating role of AI knowledge. Design/methodology/approach A survey was administered to a sample of 297 service industry employees. This study examined all the hypotheses with Mplus 8.0. Findings This study confirms that challenge appraisal toward AI has an indirect positive influence on service performance via job crafting (motivation process), whereas hindrance appraisal toward AI has an indirect negative influence on service performance via job insecurity (strain process). Meanwhile, AI knowledge, serving as a key personal resource, could strengthen the positive impacts of challenge appraisal toward AI on job crafting and of hindrance appraisal toward AI on job insecurity. Practical implications Organizational decision-makers should first survey employees’ appraisals toward AI and then adopt targeted managerial strategies. From the perspective of service industry employees, employees should adopt proactive coping strategies and enrich their knowledge of AI to meet the challenges brought by this technology. Originality/value The primary contribution of this study is that we enrich the literature on AI by exploring the dual mediators (i.e. job crafting and job insecurity) through which AI awareness affects service performance. Moreover, this study advances our understanding of when appraisals toward AI influence job outcomes by identifying the moderating role of AI knowledge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
sdahjjyk发布了新的文献求助10
刚刚
CipherSage应助姜且采纳,获得10
1秒前
不配.应助破伤疯采纳,获得10
3秒前
3秒前
4秒前
6秒前
8秒前
双木夕发布了新的文献求助10
8秒前
代骜珺发布了新的文献求助10
8秒前
孤梦落雨发布了新的文献求助10
10秒前
乐乐应助sdahjjyk采纳,获得10
11秒前
11秒前
aizhujun发布了新的文献求助10
11秒前
思源应助周大炮采纳,获得10
11秒前
可爱的函函应助qqa采纳,获得10
12秒前
xue完成签到 ,获得积分10
14秒前
文儿发布了新的文献求助10
15秒前
万能图书馆应助aizhujun采纳,获得10
15秒前
放火陈老魔完成签到,获得积分10
15秒前
hokuto应助阿宝采纳,获得10
16秒前
HB完成签到,获得积分10
18秒前
19秒前
19秒前
茶包发布了新的文献求助30
19秒前
20秒前
jingcheng完成签到,获得积分10
21秒前
22秒前
22秒前
万康发布了新的文献求助10
24秒前
小新爱看文献完成签到,获得积分10
24秒前
imi完成签到 ,获得积分10
24秒前
qqa发布了新的文献求助10
25秒前
25秒前
25秒前
熹微发布了新的文献求助10
26秒前
Clytze发布了新的文献求助10
26秒前
28秒前
28秒前
贤惠的蓝天完成签到,获得积分10
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136151
求助须知:如何正确求助?哪些是违规求助? 2787065
关于积分的说明 7780419
捐赠科研通 2443217
什么是DOI,文献DOI怎么找? 1298945
科研通“疑难数据库(出版商)”最低求助积分说明 625294
版权声明 600870