Effectively fusing clinical knowledge and AI knowledge for reliable lung nodule diagnosis

计算机科学 可解释性 人工智能 机器学习 特征(语言学) 特征提取 模式识别(心理学) 自然语言处理 数据挖掘 语言学 哲学
作者
Duwei Dai,Yongheng Sun,Caixia Dong,Qingsen Yan,Zongfang Li,Songhua Xu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:230: 120634-120634 被引量:7
标识
DOI:10.1016/j.eswa.2023.120634
摘要

Clinicians typically use semantic features to judge the malignant status of nodules, while artificial intelligence systems (AI) tend to extract unknown features to diagnose nodules. The former relies on clinical knowledge, while the latter explores AI knowledge. Although many studies indicate that fusing clinical and AI knowledge can help computer-aided diagnosis (CAD) systems improve diagnostic accuracy and gain clinician approval, how to effectively fuse them is still an open question. This paper proposes a simple and effective pipeline (abbreviated as CKAK), which fuses clinical and AI knowledge at both feature and decision levels for accurate lung nodule malignancy classification and semantic attributes characterization. The feature-level fusion can retain rich information in high-dimensional features and improve the model’s accuracy; the decision-level fusion can provide some interpretability for the model’s decision-making process, which is expected in clinical applications. Specifically, the proposed CKAK consists of two sequential stages: (i) the initial prediction stage (IPS); and (ii) the prediction refine stage (PRS). The IPS predicts eight radiologist-interpreted semantic attributes and an initial malignancy diagnosis in parallel. Then, these results are fed to the subsequent PRS to refine the diagnosis further by fully fusing them at feature and decision levels. Besides, to enhance the ability of feature learning, we propose a novel scale-aware feature extraction block (SAFE). It integrates multi-scale contextual features with a lightweight Transformer rather than adding or concatenating them roughly. Extensive experiments at the LIDC-IDRI data set show that the proposed CKAK can achieve superior benign-malignant classification accuracy with minor radiologist-interpreted semantic scores error, meeting the need for a reliable CAD system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ju龙哥完成签到,获得积分10
刚刚
年轻薯片完成签到 ,获得积分10
1秒前
漂泊2025完成签到,获得积分10
2秒前
2秒前
ZAJsci发布了新的文献求助10
3秒前
YY发布了新的文献求助10
5秒前
宁n发布了新的文献求助10
5秒前
细心的幼南完成签到,获得积分20
5秒前
cchx发布了新的文献求助10
6秒前
科目三应助郑郑采纳,获得10
6秒前
尉迟希望应助池木采纳,获得10
6秒前
小居发布了新的文献求助10
6秒前
8秒前
8秒前
ww发布了新的文献求助20
9秒前
优秀傲松完成签到,获得积分10
9秒前
充电宝应助Bright采纳,获得30
9秒前
JamesPei应助郝晨箫采纳,获得10
10秒前
赘婿应助好运接收集成器采纳,获得10
10秒前
10秒前
11秒前
苏苏完成签到 ,获得积分10
12秒前
沉默笑白完成签到,获得积分10
12秒前
13秒前
13秒前
14秒前
敖江风云完成签到,获得积分0
15秒前
香蕉觅云应助二三采纳,获得10
15秒前
善学以致用应助木木采纳,获得30
15秒前
kingwill发布了新的文献求助30
16秒前
酷酷隶完成签到,获得积分10
16秒前
深情安青应助曾经问雁采纳,获得10
16秒前
16秒前
helicase发布了新的文献求助10
16秒前
孤独秋白发布了新的文献求助10
17秒前
kai发布了新的文献求助10
17秒前
17秒前
酷波er应助LYQ680906采纳,获得10
17秒前
饱满的灵阳完成签到,获得积分20
18秒前
27完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264178
求助须知:如何正确求助?哪些是违规求助? 4424447
关于积分的说明 13773074
捐赠科研通 4299589
什么是DOI,文献DOI怎么找? 2359124
邀请新用户注册赠送积分活动 1355370
关于科研通互助平台的介绍 1316708