清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Effectively fusing clinical knowledge and AI knowledge for reliable lung nodule diagnosis

计算机科学 可解释性 人工智能 机器学习 特征(语言学) 特征提取 模式识别(心理学) 自然语言处理 数据挖掘 语言学 哲学
作者
Duwei Dai,Yongheng Sun,Caixia Dong,Qingsen Yan,Zongfang Li,Zongfang Li
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:230: 120634-120634 被引量:1
标识
DOI:10.1016/j.eswa.2023.120634
摘要

Clinicians typically use semantic features to judge the malignant status of nodules, while artificial intelligence systems (AI) tend to extract unknown features to diagnose nodules. The former relies on clinical knowledge, while the latter explores AI knowledge. Although many studies indicate that fusing clinical and AI knowledge can help computer-aided diagnosis (CAD) systems improve diagnostic accuracy and gain clinician approval, how to effectively fuse them is still an open question. This paper proposes a simple and effective pipeline (abbreviated as CKAK), which fuses clinical and AI knowledge at both feature and decision levels for accurate lung nodule malignancy classification and semantic attributes characterization. The feature-level fusion can retain rich information in high-dimensional features and improve the model’s accuracy; the decision-level fusion can provide some interpretability for the model’s decision-making process, which is expected in clinical applications. Specifically, the proposed CKAK consists of two sequential stages: (i) the initial prediction stage (IPS); and (ii) the prediction refine stage (PRS). The IPS predicts eight radiologist-interpreted semantic attributes and an initial malignancy diagnosis in parallel. Then, these results are fed to the subsequent PRS to refine the diagnosis further by fully fusing them at feature and decision levels. Besides, to enhance the ability of feature learning, we propose a novel scale-aware feature extraction block (SAFE). It integrates multi-scale contextual features with a lightweight Transformer rather than adding or concatenating them roughly. Extensive experiments at the LIDC-IDRI data set show that the proposed CKAK can achieve superior benign-malignant classification accuracy with minor radiologist-interpreted semantic scores error, meeting the need for a reliable CAD system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝桉完成签到 ,获得积分10
21秒前
方白秋完成签到,获得积分10
27秒前
1分钟前
爱静静应助科研通管家采纳,获得30
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
肆肆完成签到,获得积分10
2分钟前
jyy发布了新的文献求助10
2分钟前
2分钟前
清雨发布了新的文献求助10
2分钟前
2分钟前
chen完成签到 ,获得积分10
3分钟前
嬗变的天秤完成签到,获得积分10
3分钟前
爱静静完成签到,获得积分0
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
h0jian09完成签到,获得积分10
3分钟前
李爱国应助bukeshuo采纳,获得10
3分钟前
3分钟前
bukeshuo发布了新的文献求助10
3分钟前
sobergod完成签到 ,获得积分10
4分钟前
4分钟前
Akim应助悦耳十三采纳,获得10
4分钟前
chiyudoubao发布了新的文献求助10
4分钟前
大个应助我在这采纳,获得10
4分钟前
5分钟前
5分钟前
悦耳十三发布了新的文献求助10
5分钟前
我在这发布了新的文献求助10
5分钟前
我在这完成签到,获得积分10
5分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Актуализированная стратиграфическая схема триасовых отложений Прикаспийского региона. Объяснительная записка 360
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167202
求助须知:如何正确求助?哪些是违规求助? 2818687
关于积分的说明 7921888
捐赠科研通 2478444
什么是DOI,文献DOI怎么找? 1320323
科研通“疑难数据库(出版商)”最低求助积分说明 632748
版权声明 602438