Effectively fusing clinical knowledge and AI knowledge for reliable lung nodule diagnosis

计算机科学 可解释性 人工智能 机器学习 特征(语言学) 特征提取 模式识别(心理学) 自然语言处理 数据挖掘 语言学 哲学
作者
Duwei Dai,Yongheng Sun,Caixia Dong,Qingsen Yan,Zongfang Li,Songhua Xu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:230: 120634-120634 被引量:7
标识
DOI:10.1016/j.eswa.2023.120634
摘要

Clinicians typically use semantic features to judge the malignant status of nodules, while artificial intelligence systems (AI) tend to extract unknown features to diagnose nodules. The former relies on clinical knowledge, while the latter explores AI knowledge. Although many studies indicate that fusing clinical and AI knowledge can help computer-aided diagnosis (CAD) systems improve diagnostic accuracy and gain clinician approval, how to effectively fuse them is still an open question. This paper proposes a simple and effective pipeline (abbreviated as CKAK), which fuses clinical and AI knowledge at both feature and decision levels for accurate lung nodule malignancy classification and semantic attributes characterization. The feature-level fusion can retain rich information in high-dimensional features and improve the model’s accuracy; the decision-level fusion can provide some interpretability for the model’s decision-making process, which is expected in clinical applications. Specifically, the proposed CKAK consists of two sequential stages: (i) the initial prediction stage (IPS); and (ii) the prediction refine stage (PRS). The IPS predicts eight radiologist-interpreted semantic attributes and an initial malignancy diagnosis in parallel. Then, these results are fed to the subsequent PRS to refine the diagnosis further by fully fusing them at feature and decision levels. Besides, to enhance the ability of feature learning, we propose a novel scale-aware feature extraction block (SAFE). It integrates multi-scale contextual features with a lightweight Transformer rather than adding or concatenating them roughly. Extensive experiments at the LIDC-IDRI data set show that the proposed CKAK can achieve superior benign-malignant classification accuracy with minor radiologist-interpreted semantic scores error, meeting the need for a reliable CAD system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
max完成签到 ,获得积分10
刚刚
刚刚
1秒前
1秒前
NexusExplorer应助嘎嘎嘎嘎采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
平贝花应助科研通管家采纳,获得10
1秒前
阿三应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
Amber发布了新的文献求助10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
2秒前
zgrmws应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
jyy应助科研通管家采纳,获得10
2秒前
2秒前
tcf应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
zgrmws应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得30
2秒前
tcf应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
Ava应助科研通管家采纳,获得10
2秒前
rain应助科研通管家采纳,获得10
2秒前
Lyuxxxian关注了科研通微信公众号
2秒前
rain应助科研通管家采纳,获得10
2秒前
tcf应助科研通管家采纳,获得10
3秒前
3秒前
July应助科研通管家采纳,获得10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660493
求助须知:如何正确求助?哪些是违规求助? 4834344
关于积分的说明 15090899
捐赠科研通 4819088
什么是DOI,文献DOI怎么找? 2579076
邀请新用户注册赠送积分活动 1533600
关于科研通互助平台的介绍 1492361