Fusion of artificial intelligence and game theory for resource allocation in non‐orthogonal multiple access‐assisted device‐to‐device cooperative communication

计算机科学 光谱效率 资源配置 架空(工程) 基站 频道(广播) 干扰(通信) 计算机网络 蜂窝网络 博弈论 通信系统 操作系统 经济 微观经济学
作者
Tejal Rathod,Rajesh Gupta,Nilesh Kumar Jadav,Sudeep Tanwar,Abdulatif Alabdulatif,Ravi Sharma
出处
期刊:International Journal of Communication Systems [Wiley]
卷期号:36 (14) 被引量:1
标识
DOI:10.1002/dac.5556
摘要

Summary Device‐to‐device (D2D) communication offers a low‐cost paradigm where two devices in close proximity can communicate without needing a base station (BS). It significantly improves radio resource allocation, channel gain, communication latency, and energy efficiency and offers cooperative communication to enhance the weak user's network coverage. The cellular mobile users (CMUs) share the spectral resources (e.g., power, channel, and spectrum) with D2D mobile users (DMUs), improving spectral efficiency. However, the reuse of radio resources causes various interferences, such as intercell and intracell interference, that degrade the performance of overall D2D communication. To overcome the aforementioned issues, this paper presents a fusion of AI and coalition game for secure resource allocation in non‐orthogonal multiple access (NOMA)‐based cooperative D2D communication. Here, NOMA uses the successive interference cancellation (SIC) technique to reduce the severe impact of interference from the D2D systems. Further, we utilized a coalition game theoretic model that efficiently and securely allocates the resources between CMUs and DMUs. However, in the coalition game, all DMUs participate in obtaining resources from CMUs, which increases the computational overhead of the overall system. For that, we employ artificial intelligence (AI) classifiers that bifurcate the DMUs based on their channel quality parameters, such as reference signal received power (RSRP), received signal strength indicator (RSSI), signal‐to‐noise ratio (SNR), and channel quality indicator (CQI). It only forwards the DMUs that have better channel quality parameters into the coalition game, thus reducing the computational overhead of the overall D2D communication. The performance of the proposed scheme is evaluated using various statistical metrics, for example, precision score, accuracy, recall, F1 score, overall sum rate, and secrecy capacity, where an accuracy of 99.38% is achieved while selecting DMUs for D2D communication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小二郎应助打工人章鱼哥采纳,获得10
1秒前
优雅的琳发布了新的文献求助10
1秒前
Niar完成签到 ,获得积分10
1秒前
1秒前
2秒前
shuimo521发布了新的文献求助10
2秒前
脑洞疼应助眯眯眼的老鼠采纳,获得10
2秒前
所所应助小离采纳,获得10
2秒前
我是老大应助杨天水采纳,获得10
2秒前
woodheart完成签到,获得积分10
3秒前
3秒前
JamesPei应助miaoww采纳,获得10
3秒前
王王完成签到,获得积分10
3秒前
Evelyn完成签到,获得积分10
3秒前
cxt1346完成签到 ,获得积分10
3秒前
bkagyin应助孙一雯采纳,获得30
4秒前
顺心迎南完成签到,获得积分20
4秒前
Emma完成签到,获得积分10
4秒前
CodeCraft应助微笑鹤采纳,获得11
5秒前
5秒前
天青色等烟雨完成签到 ,获得积分10
5秒前
坚强亦丝应助hziyu采纳,获得10
5秒前
tanhaili完成签到 ,获得积分10
5秒前
乐小佳完成签到,获得积分10
5秒前
yyyrrr完成签到,获得积分10
6秒前
6秒前
6秒前
李健应助hu970采纳,获得10
6秒前
JamesPei应助守护星星采纳,获得10
7秒前
kingwill应助科研小民工采纳,获得20
7秒前
8秒前
小胖子发布了新的文献求助10
8秒前
8秒前
思源应助虚幻镜子采纳,获得10
8秒前
8秒前
宋十一发布了新的文献求助10
8秒前
大黄发布了新的文献求助10
8秒前
合适的半青给lt的求助进行了留言
8秒前
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672