电解质
环丁砜
离子
化学
稀释
化学物理
电导率
离子运输机
分子动力学
离子电导率
无机化学
电极
计算化学
溶剂
物理化学
热力学
有机化学
物理
作者
Taku Sudoh,Shuhei Ikeda,Keisuke Shigenobu,Seiji Tsuzuki,Kaoru Dokko,Masayoshi Watanabe,Wataru Shinoda,Kazuhide Ueno
标识
DOI:10.1021/acs.jpcc.3c02112
摘要
Localized high-concentration electrolytes (LHCEs), which are mixtures of highly concentrated electrolytes (HCEs) and non-coordinating diluents, have attracted significant interest as promising liquid electrolytes for next-generation Li secondary batteries, owing to their various beneficial properties both in the bulk and at the electrode/electrolyte interface. We previously reported that the large Li+-ion transference number in sulfolane (SL)-based HCEs, attributed to the unique exchange/hopping-like Li+-ion conduction, decreased upon dilution with the non-coordinating hydrofluoroether (HFE) despite the retention of the local Li+-ion coordination structure. Therefore, in this study, we investigated the effects of HFE dilution on the Li+ transference number and the solution structure of SL-based LHCEs via the analysis of dynamic ion correlations and molecular dynamics simulations. The addition of HFE caused nano-segregation in the SL-based LHCEs to afford polar and nonpolar domains and fragmentation of the polar ion-conducting pathway into smaller clusters with increasing HFE content. Analysis of the dynamic ion correlations revealed that the anti-correlated Li+–Li+ motions were more pronounced upon HFE addition, suggesting that the Li+ exchange/hopping conduction is obstructed by the non-ion-conducting HFE-rich domains. Thus, the HFE addition affects the entire solution structure and ion transport without significantly affecting the local Li+-ion coordination structure. Further studies on ion transport in LHCEs would help obtain a design principle for liquid electrolytes with high ionic conductivity and large Li+-ion transference numbers.
科研通智能强力驱动
Strongly Powered by AbleSci AI