Products and starting materials containing volatile organic compounds (VOCs) can easily be found in a variety of businesses, making them a common source of occupational exposure. To prevent negative impacts on employee health, field industrial hygienists must conduct regular sampling to ensure exposures remain below the regulatory limits set by governmental and professional associations. As such, the need for sensitive and reliable exposure assessment techniques becomes evident. Over the preceding decade, the industrial hygiene research group at the University of Alabama at Birmingham (UAB) has been working on the development of an emerging, preanalytical technique known as photothermal desorption (PTD) to improve upon the analytical sensitivity of currently employed methods. PTD's novel design uses pulses of high-energy light to desorb analytes from thermally conductive, carbonaceous sorbents, to be delivered to downstream analytical detectors. Since PTD's conception, the theoretical framework and advances in sorbent fabrication have been investigated; however, further work is needed to produce a field-ready sampling device for use with PTD. As such, objectives of the present work were to design a PTD-compatible diffusive sampler prototype and characterize the prototype's sampling efficiencies for toluene,