生物
渗入
溯祖理论
基因流
进化生物学
系统发育学
谱系(遗传)
克莱德
网状进化
系统发育树
适应性辐射
遗传变异
遗传学
基因
作者
Chun-Qian Ren,Danqing Zhang,Xiaoying Liu,Jian‐Qiang Zhang
标识
DOI:10.1016/j.ympev.2023.107863
摘要
The Tibetan Plateau and adjacent mountain regions (TP; including the Tibetan Plateau, Himalaya, Hengduan Mountains and Mountains of Central Asia) harbor great biodiversity, some lineages on which may have undergone rapid radiations. However, only a few studies have investigated the evolutionary pattern of such diversification in depth using genomic data. In this study, we reconstructed a robust phylogeny backbone of Rhodiola, a lineage that may have undergone rapid radiation in the TP, using Genotyping-by-sequencing data, and conducted a series of gene flow and diversification analyses. The concatenation and coalescent-based methods yield similar tree topologies, and five well-supported clades were revealed. Potential gene flow and introgression events were detected, both between species from different major clades and closely related species, suggesting pervasive hybridization and introgression. An initial rapid and later slowdown of the diversification rate was revealed, indicating niche filling. Molecular dating and correlation analyses showed that the uplift of TP and global cooling in the mid-Miocene might have played an important role in promoting the rapid radiation of Rhodiola. Our work demonstrates that gene flow and introgression might be an important contributor to rapid radiation possibly by quickly reassembling old genetic variation into new combinations.
科研通智能强力驱动
Strongly Powered by AbleSci AI