STA-GCN: Spatial-Temporal Self-Attention Graph Convolutional Networks for Traffic-Flow Prediction

计算机科学 可解释性 数据挖掘 图形 流量(计算机网络) 人工智能 理论计算机科学 计算机安全
作者
Zheng Chang,Chunsheng Liu,Jianmin Jia
出处
期刊:Applied sciences [MDPI AG]
卷期号:13 (11): 6796-6796 被引量:1
标识
DOI:10.3390/app13116796
摘要

As an important component of intelligent transportation-management systems, accurate traffic-parameter prediction can help traffic-management departments to conduct effective traffic management. Due to the nonlinearity, complexity, and dynamism of highway-traffic data, traffic-flow prediction is still a challenging issue. Currently, most spatial–temporal traffic-flow-prediction models adopt fixed-structure time convolutional and graph convolutional models, which lack the ability to capture the dynamic characteristics of traffic flow. To address this issue, this paper proposes a spatial–temporal prediction model that can capture the dynamic spatial–temporal characteristics of traffic flow, named the spatial–temporal self-attention graph convolutional network (STA-GCN). In terms of feature engineering, we used the time cosine decomposition and one-hot encoding methods to capture the periodicity and heterogeneity of traffic-flow changes. Additionally, in order to build the model, self-attention mechanisms were incorporated into the spatial–temporal convolution to capture the spatial–temporal dynamic characteristics of traffic flow. The experimental results indicate that the performance of the proposed model on two traffic-volume datasets is superior to those of several baseline models. In particular, in long-term prediction, the prediction error can be reduced by over 5%. Further, the interpretability and robustness of the prediction model are addressed by considering the spatial dynamic changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助Ann采纳,获得10
刚刚
斯文败类应助Linyi采纳,获得10
刚刚
lu完成签到,获得积分10
1秒前
gyhmybsy完成签到,获得积分10
1秒前
yiyi131发布了新的文献求助20
5秒前
8秒前
Guke完成签到,获得积分10
9秒前
Bethune完成签到 ,获得积分10
11秒前
你想不想变成一粒芝麻完成签到,获得积分10
11秒前
和谐为上发布了新的文献求助10
11秒前
13秒前
15秒前
研友_n2r2Kn完成签到,获得积分10
17秒前
17秒前
俞渝发布了新的文献求助30
18秒前
可爱的函函应助gdh采纳,获得10
19秒前
Ann发布了新的文献求助10
20秒前
21秒前
Minerva发布了新的文献求助10
21秒前
闪闪完成签到 ,获得积分10
22秒前
俞渝完成签到,获得积分20
28秒前
31秒前
31秒前
陈晨完成签到,获得积分10
33秒前
34秒前
小马甲应助wxyllxx采纳,获得10
34秒前
36秒前
麻薯头头发布了新的文献求助10
36秒前
37秒前
38秒前
Linyi发布了新的文献求助10
38秒前
mml发布了新的文献求助10
39秒前
琉璃苣应助LC采纳,获得10
42秒前
。。。完成签到,获得积分10
43秒前
43秒前
霖宸羽完成签到,获得积分10
46秒前
田様应助mml采纳,获得10
47秒前
奇奇吃面发布了新的文献求助10
47秒前
我是老大应助wxyllxx采纳,获得10
50秒前
七月不看海完成签到,获得积分10
51秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137575
求助须知:如何正确求助?哪些是违规求助? 2788520
关于积分的说明 7787428
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300110
科研通“疑难数据库(出版商)”最低求助积分说明 625813
版权声明 601023