Deep neural network-based reduced-order modeling of ion–surface interactions combined with molecular dynamics simulation

自编码 离子 分子动力学 溅射 材料科学 等离子体刻蚀 特征(语言学) 曲面(拓扑) 人工神经网络 计算物理学 计算机科学 蚀刻(微加工) 纳米技术 人工智能 化学 物理 数学 几何学 计算化学 图层(电子) 有机化学 哲学 语言学 薄膜
作者
Byungjo Kim,Jinkyu Bae,Hyunhak Jeong,Seung Ho Hahn,Suyoung Yoo,Sang Ki Nam
出处
期刊:Journal of Physics D [IOP Publishing]
卷期号:56 (38): 384005-384005 被引量:3
标识
DOI:10.1088/1361-6463/acdd7f
摘要

Abstract With the advent of complex and sophisticated architectures in semiconductor device manufacturing, atomic-resolution accuracy and precision are commonly required for industrial plasma processing. This demands a comprehensive understanding of the plasma–material interactions—particularly for forming fine high-aspect ratio (HAR) feature patterns with sufficiently high yield in wafer-level processes. In particular, because the shape distortion in HAR pattern etching is attributed to the deviation of the energetic ion trajectory, the detailed ion–surface interactions need to be thoroughly investigated. In this study, molecular dynamics (MD) simulations were utilized to obtain a fundamental understanding of the collisional nature of accelerated Ar ions on the fluorinated Si surface that may appear on the sidewall of the HAR etched hole. High-fidelity data for ion–surface interaction features representing the energy and angle distributions (EADs) of sputtered atoms for varying degrees of surface F coverage and ion incident angles were obtained via extensive MD simulations. A deep learning-based reduced-order modeling (DL-ROM) framework was developed for efficiently predicting the characteristics of the ion–surface interactions. In the ROM framework, a conditional variational autoencoder (AE) was implemented to obtain regularized latent representations of the distributional data with the condition of the governing factors of the physical system. The proposed ROM framework accurately reproduced the MD simulation results and significantly outperformed various DL-ROMs, such as AE, sparse AE, contractive AE, denoising AE, and variational AE. From the inferred features of the sputtering yield and EADs of sputtered/scattered species, significant insights can be obtained regarding the ion interactions with the fluorinated surface. As the ion incident angle deviated from the glancing-angle range (incident angle >80°), diffuse reflection behavior was observed, which can substantially affect the ion transport in the HAR patterns. Moreover, it was hypothesized that a shift in sputtering characteristics occurs as the surface F coverage varies, based on the inferred EADs. This conjecture was confirmed through detailed MD simulations that demonstrated the fundamental relationship between surface atomic conformations and their sputtering behavior. Combined with additional atomistic-scale investigations, this framework can provide an efficient way to reveal various fundamental plasma–material interactions which are highly demanded for the future development of semiconductor device manufacturing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aiden完成签到,获得积分10
3秒前
槐序完成签到,获得积分20
3秒前
云隐完成签到,获得积分10
3秒前
hunting完成签到,获得积分10
6秒前
6秒前
共享精神应助潇潇雨歇采纳,获得10
7秒前
寂寞的寄文完成签到,获得积分10
7秒前
爱静静应助大力的无声采纳,获得10
8秒前
和平使命应助大力的无声采纳,获得10
8秒前
9秒前
jessie发布了新的文献求助10
9秒前
小马甲应助寂寞的寄文采纳,获得10
12秒前
13秒前
岸在海的深处完成签到 ,获得积分10
14秒前
xiao应助小吴采纳,获得10
15秒前
西溪完成签到 ,获得积分10
15秒前
16秒前
pi发布了新的文献求助10
17秒前
hunting发布了新的文献求助10
17秒前
17秒前
jujijuji应助Anquan采纳,获得10
17秒前
18秒前
18秒前
bkagyin应助科研通管家采纳,获得10
20秒前
CodeCraft应助科研通管家采纳,获得10
20秒前
王黎应助科研通管家采纳,获得30
20秒前
李爱国应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
Neko应助科研通管家采纳,获得20
21秒前
21秒前
JiangHb完成签到,获得积分10
22秒前
23秒前
23秒前
Jian发布了新的文献求助20
23秒前
lingjuanwu发布了新的文献求助10
23秒前
南鸢完成签到 ,获得积分10
24秒前
今后应助wbn1212采纳,获得10
24秒前
光电彭于晏完成签到,获得积分10
24秒前
丰盛的煎饼应助LiShin采纳,获得10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851