Generalizability and Diagnostic Performance of AI Models for Thyroid US

医学 概化理论 接收机工作特性 甲状腺结节 分割 Sørensen–骰子系数 科恩卡帕 人工智能 掷骰子 回顾性队列研究 机器学习 放射科 甲状腺 统计 外科 图像分割 计算机科学 内科学 数学
作者
Wenwen Xu,Xiaohong Jia,Zihan Mei,XiaoLin Gu,Yang Lu,Chi-Cheng Fu,Ruifang Zhang,Ying Gu,Xia Chen,Xiaomao Luo,Ning Li,Baoyan Bai,Qiaoying Li,Jiping Yan,Zhai Hong,Ling Guan,Bing Gong,Keyang Zhao,Qu Fang,Chuan He
出处
期刊:Radiology [Radiological Society of North America]
卷期号:307 (5) 被引量:10
标识
DOI:10.1148/radiol.221157
摘要

Background Artificial intelligence (AI) models have improved US assessment of thyroid nodules; however, the lack of generalizability limits the application of these models. Purpose To develop AI models for segmentation and classification of thyroid nodules in US using diverse data sets from nationwide hospitals and multiple vendors, and to measure the impact of the AI models on diagnostic performance. Materials and Methods This retrospective study included consecutive patients with pathologically confirmed thyroid nodules who underwent US using equipment from 12 vendors at 208 hospitals across China from November 2017 to January 2019. The detection, segmentation, and classification models were developed based on the subset or complete set of images. Model performance was evaluated by precision and recall, Dice coefficient, and area under the receiver operating characteristic curve (AUC) analyses. Three scenarios (diagnosis without AI assistance, with freestyle AI assistance, and with rule-based AI assistance) were compared with three senior and three junior radiologists to optimize incorporation of AI into clinical practice. Results A total of 10 023 patients (median age, 46 years [IQR 37–55 years]; 7669 female) were included. The detection, segmentation, and classification models had an average precision, Dice coefficient, and AUC of 0.98 (95% CI: 0.96, 0.99), 0.86 (95% CI: 0.86, 0.87), and 0.90 (95% CI: 0.88, 0.92), respectively. The segmentation model trained on the nationwide data and classification model trained on the mixed vendor data exhibited the best performance, with a Dice coefficient of 0.91 (95% CI: 0.90, 0.91) and AUC of 0.98 (95% CI: 0.97, 1.00), respectively. The AI model outperformed all senior and junior radiologists (P < .05 for all comparisons), and the diagnostic accuracies of all radiologists were improved (P < .05 for all comparisons) with rule-based AI assistance. Conclusion Thyroid US AI models developed from diverse data sets had high diagnostic performance among the Chinese population. Rule-based AI assistance improved the performance of radiologists in thyroid cancer diagnosis. © RSNA, 2023 Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐逊发布了新的文献求助10
1秒前
香蕉觅云应助野性的博涛采纳,获得10
1秒前
Wonderland完成签到,获得积分10
4秒前
6秒前
爱笑的傲薇完成签到,获得积分10
7秒前
alwry发布了新的文献求助10
7秒前
完美世界应助wa采纳,获得10
7秒前
Lucas应助星辰采纳,获得10
9秒前
10秒前
Wy完成签到,获得积分10
10秒前
jiahuo1完成签到,获得积分10
11秒前
英俊绝义发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
yaoyao完成签到,获得积分10
14秒前
Rondab应助suha采纳,获得10
14秒前
15秒前
陶佳仪完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
17秒前
17秒前
18秒前
18秒前
da发布了新的文献求助10
19秒前
可爱得喵喵叫的中华卷柏完成签到 ,获得积分10
19秒前
19秒前
坦率的匪应助英俊绝义采纳,获得10
20秒前
wa发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
21秒前
情怀应助陈龙采纳,获得10
22秒前
23秒前
Owen应助流萤采纳,获得10
23秒前
所所应助阿旭采纳,获得10
24秒前
Han发布了新的文献求助10
27秒前
NexusExplorer应助STAN采纳,获得10
27秒前
Sienna发布了新的文献求助10
28秒前
yaoyao发布了新的文献求助10
28秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979479
求助须知:如何正确求助?哪些是违规求助? 3523421
关于积分的说明 11217607
捐赠科研通 3260944
什么是DOI,文献DOI怎么找? 1800264
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807126