亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Generalizability and Diagnostic Performance of AI Models for Thyroid US

医学 概化理论 接收机工作特性 甲状腺结节 分割 Sørensen–骰子系数 科恩卡帕 人工智能 掷骰子 回顾性队列研究 机器学习 放射科 甲状腺 统计 外科 图像分割 计算机科学 内科学 数学
作者
Wenwen Xu,Xiaohong Jia,Zihan Mei,Xiaolin Gu,Yang Lu,Chi-Cheng Fu,Ruifang Zhang,Ying Gu,Xia Chen,Xiaomao Luo,Ning Li,Baoyan Bai,Qiaoying Li,Jiping Yan,Zhai Hong,Ling Guan,Bing Gong,Keyang Zhao,Qu Fang,Chuan He
出处
期刊:Radiology [Radiological Society of North America]
卷期号:307 (5): e221157-e221157 被引量:23
标识
DOI:10.1148/radiol.221157
摘要

Background Artificial intelligence (AI) models have improved US assessment of thyroid nodules; however, the lack of generalizability limits the application of these models. Purpose To develop AI models for segmentation and classification of thyroid nodules in US using diverse data sets from nationwide hospitals and multiple vendors, and to measure the impact of the AI models on diagnostic performance. Materials and Methods This retrospective study included consecutive patients with pathologically confirmed thyroid nodules who underwent US using equipment from 12 vendors at 208 hospitals across China from November 2017 to January 2019. The detection, segmentation, and classification models were developed based on the subset or complete set of images. Model performance was evaluated by precision and recall, Dice coefficient, and area under the receiver operating characteristic curve (AUC) analyses. Three scenarios (diagnosis without AI assistance, with freestyle AI assistance, and with rule-based AI assistance) were compared with three senior and three junior radiologists to optimize incorporation of AI into clinical practice. Results A total of 10 023 patients (median age, 46 years [IQR 37-55 years]; 7669 female) were included. The detection, segmentation, and classification models had an average precision, Dice coefficient, and AUC of 0.98 (95% CI: 0.96, 0.99), 0.86 (95% CI: 0.86, 0.87), and 0.90 (95% CI: 0.88, 0.92), respectively. The segmentation model trained on the nationwide data and classification model trained on the mixed vendor data exhibited the best performance, with a Dice coefficient of 0.91 (95% CI: 0.90, 0.91) and AUC of 0.98 (95% CI: 0.97, 1.00), respectively. The AI model outperformed all senior and junior radiologists (P < .05 for all comparisons), and the diagnostic accuracies of all radiologists were improved (P < .05 for all comparisons) with rule-based AI assistance. Conclusion Thyroid US AI models developed from diverse data sets had high diagnostic performance among the Chinese population. Rule-based AI assistance improved the performance of radiologists in thyroid cancer diagnosis. © RSNA, 2023 Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助daidai采纳,获得10
13秒前
eliauk发布了新的文献求助10
22秒前
学术交流高完成签到 ,获得积分10
23秒前
25秒前
生信精准科研完成签到,获得积分10
26秒前
Nov_snowr发布了新的文献求助30
30秒前
领导范儿应助哈比人linling采纳,获得10
40秒前
bkagyin应助霏霏不是菲菲采纳,获得30
40秒前
我是老大应助世良采纳,获得10
51秒前
58秒前
58秒前
世良发布了新的文献求助10
1分钟前
麻辣香锅发布了新的文献求助10
1分钟前
科研通AI6应助健康的易梦采纳,获得10
1分钟前
eliauk完成签到,获得积分10
1分钟前
科研通AI6应助健康的易梦采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
脑洞疼应助麻辣香锅采纳,获得10
1分钟前
1分钟前
烟花应助哈比人linling采纳,获得10
1分钟前
汉堡包应助墨绝采纳,获得10
1分钟前
丘比特应助墨绝采纳,获得30
1分钟前
1分钟前
Owen应助史育川采纳,获得10
1分钟前
麻辣香锅发布了新的文献求助10
1分钟前
冷静新烟发布了新的文献求助10
2分钟前
2分钟前
墨绝发布了新的文献求助30
2分钟前
李爱国应助熊二采纳,获得10
2分钟前
2分钟前
领导范儿应助麻辣香锅采纳,获得10
2分钟前
叽叽发布了新的文献求助10
2分钟前
熊二完成签到,获得积分20
2分钟前
2分钟前
熊二发布了新的文献求助10
2分钟前
安详的从筠完成签到,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650843
求助须知:如何正确求助?哪些是违规求助? 4781799
关于积分的说明 15052655
捐赠科研通 4809623
什么是DOI,文献DOI怎么找? 2572434
邀请新用户注册赠送积分活动 1528494
关于科研通互助平台的介绍 1487437