Generalizability and Diagnostic Performance of AI Models for Thyroid US

医学 概化理论 接收机工作特性 甲状腺结节 分割 Sørensen–骰子系数 科恩卡帕 人工智能 掷骰子 回顾性队列研究 机器学习 放射科 甲状腺 统计 外科 图像分割 计算机科学 内科学 数学
作者
Wenwen Xu,Xiaohong Jia,Zihan Mei,XiaoLin Gu,Yang Lu,Chi-Cheng Fu,Ruifang Zhang,Ying Gu,Xia Chen,Xiaomao Luo,Ning Li,Baoyan Bai,Qiaoying Li,Jiping Yan,Zhai Hong,Ling Guan,Bing Gong,Keyang Zhao,Qu Fang,Chuan He,Weiwei Zhan,Ting Luo,Huiting Zhang,Yijie Dong,JianQiao Zhou
出处
期刊:Radiology [Radiological Society of North America]
卷期号:307 (5) 被引量:3
标识
DOI:10.1148/radiol.221157
摘要

Background Artificial intelligence (AI) models have improved US assessment of thyroid nodules; however, the lack of generalizability limits the application of these models. Purpose To develop AI models for segmentation and classification of thyroid nodules in US using diverse data sets from nationwide hospitals and multiple vendors, and to measure the impact of the AI models on diagnostic performance. Materials and Methods This retrospective study included consecutive patients with pathologically confirmed thyroid nodules who underwent US using equipment from 12 vendors at 208 hospitals across China from November 2017 to January 2019. The detection, segmentation, and classification models were developed based on the subset or complete set of images. Model performance was evaluated by precision and recall, Dice coefficient, and area under the receiver operating characteristic curve (AUC) analyses. Three scenarios (diagnosis without AI assistance, with freestyle AI assistance, and with rule-based AI assistance) were compared with three senior and three junior radiologists to optimize incorporation of AI into clinical practice. Results A total of 10 023 patients (median age, 46 years [IQR 37–55 years]; 7669 female) were included. The detection, segmentation, and classification models had an average precision, Dice coefficient, and AUC of 0.98 (95% CI: 0.96, 0.99), 0.86 (95% CI: 0.86, 0.87), and 0.90 (95% CI: 0.88, 0.92), respectively. The segmentation model trained on the nationwide data and classification model trained on the mixed vendor data exhibited the best performance, with a Dice coefficient of 0.91 (95% CI: 0.90, 0.91) and AUC of 0.98 (95% CI: 0.97, 1.00), respectively. The AI model outperformed all senior and junior radiologists (P < .05 for all comparisons), and the diagnostic accuracies of all radiologists were improved (P < .05 for all comparisons) with rule-based AI assistance. Conclusion Thyroid US AI models developed from diverse data sets had high diagnostic performance among the Chinese population. Rule-based AI assistance improved the performance of radiologists in thyroid cancer diagnosis. © RSNA, 2023 Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bai完成签到 ,获得积分10
刚刚
柚子味的诗完成签到,获得积分10
刚刚
冯11发布了新的文献求助10
1秒前
lmc完成签到,获得积分10
1秒前
1秒前
FLZLC完成签到,获得积分10
1秒前
恰恰来吃完成签到 ,获得积分10
1秒前
2秒前
领导范儿应助CY采纳,获得10
2秒前
yatou5651完成签到,获得积分10
2秒前
小红完成签到 ,获得积分10
2秒前
3秒前
FashionBoy应助exy采纳,获得10
3秒前
zh驳回了小蘑菇应助
4秒前
hhhhhhan616完成签到,获得积分10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
Singularity应助科研通管家采纳,获得10
4秒前
lemonlmm应助科研通管家采纳,获得30
4秒前
4秒前
4秒前
玩命的靖仇完成签到,获得积分10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
清风明月完成签到,获得积分10
4秒前
lemonlmm应助科研通管家采纳,获得30
5秒前
wangyyyy1完成签到,获得积分10
5秒前
yatou5651发布了新的文献求助10
5秒前
李健的小迷弟应助ZXW采纳,获得50
5秒前
星星会开花完成签到,获得积分10
5秒前
烜66完成签到,获得积分10
5秒前
三千年的成长完成签到 ,获得积分10
5秒前
pbowin发布了新的文献求助10
6秒前
6秒前
mumu完成签到,获得积分10
7秒前
禹笑珊完成签到,获得积分10
7秒前
佐佐木淳平完成签到,获得积分10
9秒前
Sylvia0528完成签到,获得积分10
10秒前
tdtk完成签到,获得积分10
10秒前
萧驭枫完成签到,获得积分10
10秒前
外向的烤鸡完成签到,获得积分10
12秒前
时兆娟完成签到 ,获得积分10
12秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167416
求助须知:如何正确求助?哪些是违规求助? 2818928
关于积分的说明 7923662
捐赠科研通 2478740
什么是DOI,文献DOI怎么找? 1320438
科研通“疑难数据库(出版商)”最低求助积分说明 632803
版权声明 602443