Model Access Control Based on Hidden Adversarial Examples for Automatic Speech Recognition

对抗制 计算机科学 语音识别 控制(管理) 访问控制 人工智能 自然语言处理 计算机网络
作者
H.F. Chen,Jie Zhang,Kejiang Chen,Weiming Zhang,Nenghai Yu
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:5 (3): 1302-1315
标识
DOI:10.1109/tai.2023.3285858
摘要

Deep neural networks (DNNs) have achieved remarkable success across various domains, and their commercial value has led to their classification as intellectual property (IP) for their creators. While model watermarking is commonly employed for DNN IP protection, it is limited to post hoc forensics. In contrast, model access control offers a more effective proactive approach to prevent IP infringement through authentication. However, existing model access control methods primarily focus on image classification models and are not suitable for automatic speech recognition (ASR) models, which are also widely used in commercial applications. To address the above limitation, inspired by audio adversarial examples, we propose the first model access control scheme for the IP protection of ASR models, which utilizes audio adversarial examples with target labels as user identity information, serving as identity-proof samples. However, a unique challenge arises in the form of interception attacks, in which an attacker detects and hijacks an authorized sample to bypass the authentication process. To remedy it, we introduce the hidden adversarial examples (HAEs) for authentication, which embed the authorized information by slightly modifying the logits and behaving like clean audios, thereby making them difficult to be detected by analyzing the predicted results. To further evade detection by steganalysis, which can be employed for adversarial example detection, we design a distortion cost function inspired by adaptive steganography to guide the generation of HAEs. We conduct extensive experiments on the open-source ASR system DeepSpeech, demonstrating that our proposed scheme effectively protects ASR models proactively and is resistant to unique interception attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
深情安青应助jue采纳,获得10
1秒前
book完成签到,获得积分20
2秒前
Eternity完成签到,获得积分10
3秒前
feezy完成签到,获得积分10
3秒前
rachel03发布了新的文献求助10
3秒前
gmmysyy发布了新的文献求助10
3秒前
木子木子粒完成签到 ,获得积分10
3秒前
李健的小迷弟应助西岭采纳,获得10
3秒前
genoy发布了新的文献求助10
4秒前
灰光呀发布了新的文献求助10
4秒前
4秒前
iNk应助wind采纳,获得10
4秒前
wind发布了新的文献求助10
6秒前
麦旋风完成签到,获得积分10
6秒前
111完成签到,获得积分20
6秒前
脑洞疼应助森尼吖采纳,获得10
7秒前
8秒前
8秒前
9秒前
大气的小馒头完成签到,获得积分20
9秒前
Winkhl完成签到,获得积分10
9秒前
9秒前
灰光呀完成签到,获得积分10
11秒前
yzy完成签到,获得积分10
11秒前
11秒前
然@发布了新的文献求助10
12秒前
13秒前
科研养猫猫完成签到,获得积分10
13秒前
可萨利亚应助小瓶子采纳,获得10
15秒前
打打应助激动的士萧采纳,获得10
15秒前
yzy发布了新的文献求助10
15秒前
科研通AI2S应助俏皮不可采纳,获得10
16秒前
leisurelft发布了新的文献求助10
16秒前
好困应助友好似狮采纳,获得10
17秒前
Qing发布了新的文献求助10
18秒前
Laura567完成签到,获得积分10
18秒前
18秒前
难过冷玉完成签到,获得积分10
19秒前
zry发布了新的文献求助30
20秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
Trace Fossils 1500
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149056
求助须知:如何正确求助?哪些是违规求助? 2800110
关于积分的说明 7838594
捐赠科研通 2457644
什么是DOI,文献DOI怎么找? 1307938
科研通“疑难数据库(出版商)”最低求助积分说明 628362
版权声明 601685