Model Access Control Based on Hidden Adversarial Examples for Automatic Speech Recognition

对抗制 计算机科学 语音识别 控制(管理) 访问控制 人工智能 自然语言处理 计算机网络
作者
H.F. Chen,Jie Zhang,Kejiang Chen,Weiming Zhang,Nenghai Yu
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:5 (3): 1302-1315
标识
DOI:10.1109/tai.2023.3285858
摘要

Deep neural networks (DNNs) have achieved remarkable success across various domains, and their commercial value has led to their classification as intellectual property (IP) for their creators. While model watermarking is commonly employed for DNN IP protection, it is limited to post hoc forensics. In contrast, model access control offers a more effective proactive approach to prevent IP infringement through authentication. However, existing model access control methods primarily focus on image classification models and are not suitable for automatic speech recognition (ASR) models, which are also widely used in commercial applications. To address the above limitation, inspired by audio adversarial examples, we propose the first model access control scheme for the IP protection of ASR models, which utilizes audio adversarial examples with target labels as user identity information, serving as identity-proof samples. However, a unique challenge arises in the form of interception attacks, in which an attacker detects and hijacks an authorized sample to bypass the authentication process. To remedy it, we introduce the hidden adversarial examples (HAEs) for authentication, which embed the authorized information by slightly modifying the logits and behaving like clean audios, thereby making them difficult to be detected by analyzing the predicted results. To further evade detection by steganalysis, which can be employed for adversarial example detection, we design a distortion cost function inspired by adaptive steganography to guide the generation of HAEs. We conduct extensive experiments on the open-source ASR system DeepSpeech, demonstrating that our proposed scheme effectively protects ASR models proactively and is resistant to unique interception attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Yenom发布了新的文献求助10
1秒前
2秒前
滴滴发布了新的文献求助10
3秒前
心灵美发卡完成签到,获得积分10
3秒前
科目三应助浩浩大人采纳,获得10
4秒前
考虑考虑完成签到,获得积分10
4秒前
彪壮的刺猬完成签到,获得积分10
5秒前
杏花饼完成签到,获得积分10
5秒前
Ll发布了新的文献求助10
5秒前
5秒前
汉堡包应助啊娴仔采纳,获得10
6秒前
6秒前
珂伟完成签到,获得积分10
6秒前
鲜艳的帅哥完成签到,获得积分10
7秒前
wkjsdsg完成签到,获得积分10
7秒前
大七完成签到 ,获得积分10
7秒前
7秒前
jogrgr发布了新的文献求助10
8秒前
lll发布了新的文献求助10
9秒前
生气的鸡蛋完成签到,获得积分10
9秒前
qi发布了新的文献求助10
9秒前
zino发布了新的文献求助10
10秒前
10秒前
10秒前
stt发布了新的文献求助10
11秒前
小蘑菇应助杏花饼采纳,获得10
11秒前
海棠yiyi发布了新的文献求助50
11秒前
camellia完成签到 ,获得积分10
12秒前
12秒前
12秒前
田様应助柠木采纳,获得10
12秒前
12秒前
研友_VZG7GZ应助生气的鸡蛋采纳,获得10
13秒前
13秒前
13秒前
威武的万仇完成签到 ,获得积分10
14秒前
迷路的水彤完成签到 ,获得积分10
14秒前
千里发布了新的文献求助10
14秒前
jogrgr完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759