Model Access Control Based on Hidden Adversarial Examples for Automatic Speech Recognition

对抗制 计算机科学 语音识别 控制(管理) 访问控制 人工智能 自然语言处理 计算机网络
作者
H.F. Chen,Jie Zhang,Kejiang Chen,Weiming Zhang,Nenghai Yu
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:5 (3): 1302-1315
标识
DOI:10.1109/tai.2023.3285858
摘要

Deep neural networks (DNNs) have achieved remarkable success across various domains, and their commercial value has led to their classification as intellectual property (IP) for their creators. While model watermarking is commonly employed for DNN IP protection, it is limited to post hoc forensics. In contrast, model access control offers a more effective proactive approach to prevent IP infringement through authentication. However, existing model access control methods primarily focus on image classification models and are not suitable for automatic speech recognition (ASR) models, which are also widely used in commercial applications. To address the above limitation, inspired by audio adversarial examples, we propose the first model access control scheme for the IP protection of ASR models, which utilizes audio adversarial examples with target labels as user identity information, serving as identity-proof samples. However, a unique challenge arises in the form of interception attacks, in which an attacker detects and hijacks an authorized sample to bypass the authentication process. To remedy it, we introduce the hidden adversarial examples (HAEs) for authentication, which embed the authorized information by slightly modifying the logits and behaving like clean audios, thereby making them difficult to be detected by analyzing the predicted results. To further evade detection by steganalysis, which can be employed for adversarial example detection, we design a distortion cost function inspired by adaptive steganography to guide the generation of HAEs. We conduct extensive experiments on the open-source ASR system DeepSpeech, demonstrating that our proposed scheme effectively protects ASR models proactively and is resistant to unique interception attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助糖糖采纳,获得10
1秒前
2秒前
2秒前
时梦冉完成签到 ,获得积分10
3秒前
爆米花应助Robert采纳,获得10
3秒前
5秒前
Avvei发布了新的文献求助10
6秒前
温柔凌兰发布了新的文献求助10
6秒前
英吉利25发布了新的文献求助10
6秒前
6秒前
虚幻寄文完成签到 ,获得积分10
8秒前
8秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
汤沧海发布了新的文献求助10
11秒前
Faye完成签到,获得积分10
12秒前
脑洞疼应助Danna采纳,获得10
13秒前
大吱吱发布了新的文献求助10
13秒前
SciGPT应助拼搏的似狮采纳,获得10
14秒前
14秒前
爆米花应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
15秒前
浮游应助科研通管家采纳,获得30
15秒前
15秒前
张耀方发布了新的文献求助10
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得30
15秒前
15秒前
核桃应助科研通管家采纳,获得10
15秒前
核桃应助科研通管家采纳,获得10
15秒前
15秒前
桐桐应助科研通管家采纳,获得10
15秒前
共享精神应助科研通管家采纳,获得10
15秒前
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
16秒前
田様应助Markus采纳,获得30
16秒前
汤沧海完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Selected papers II : with commentaries 1000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5062637
求助须知:如何正确求助?哪些是违规求助? 4286396
关于积分的说明 13356994
捐赠科研通 4104212
什么是DOI,文献DOI怎么找? 2247379
邀请新用户注册赠送积分活动 1252944
关于科研通互助平台的介绍 1183868