Model Access Control Based on Hidden Adversarial Examples for Automatic Speech Recognition

对抗制 计算机科学 语音识别 控制(管理) 访问控制 人工智能 自然语言处理 计算机网络
作者
H.F. Chen,Jie Zhang,Kejiang Chen,Weiming Zhang,Nenghai Yu
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:5 (3): 1302-1315
标识
DOI:10.1109/tai.2023.3285858
摘要

Deep neural networks (DNNs) have achieved remarkable success across various domains, and their commercial value has led to their classification as intellectual property (IP) for their creators. While model watermarking is commonly employed for DNN IP protection, it is limited to post hoc forensics. In contrast, model access control offers a more effective proactive approach to prevent IP infringement through authentication. However, existing model access control methods primarily focus on image classification models and are not suitable for automatic speech recognition (ASR) models, which are also widely used in commercial applications. To address the above limitation, inspired by audio adversarial examples, we propose the first model access control scheme for the IP protection of ASR models, which utilizes audio adversarial examples with target labels as user identity information, serving as identity-proof samples. However, a unique challenge arises in the form of interception attacks, in which an attacker detects and hijacks an authorized sample to bypass the authentication process. To remedy it, we introduce the hidden adversarial examples (HAEs) for authentication, which embed the authorized information by slightly modifying the logits and behaving like clean audios, thereby making them difficult to be detected by analyzing the predicted results. To further evade detection by steganalysis, which can be employed for adversarial example detection, we design a distortion cost function inspired by adaptive steganography to guide the generation of HAEs. We conduct extensive experiments on the open-source ASR system DeepSpeech, demonstrating that our proposed scheme effectively protects ASR models proactively and is resistant to unique interception attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
文艺香菱发布了新的文献求助10
刚刚
alvin完成签到,获得积分10
1秒前
鲍建芳完成签到,获得积分10
2秒前
烟花应助@@@采纳,获得10
2秒前
zx598376321完成签到,获得积分10
2秒前
YL发布了新的文献求助10
2秒前
2秒前
CodeCraft应助nenshen采纳,获得10
2秒前
熊二完成签到,获得积分10
3秒前
33完成签到 ,获得积分10
3秒前
酷波er应助高贵路灯采纳,获得10
3秒前
Aten完成签到,获得积分10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
3秒前
明理楷瑞完成签到,获得积分10
3秒前
云舒应助科研通管家采纳,获得40
3秒前
SYLH应助科研通管家采纳,获得20
3秒前
思源应助科研通管家采纳,获得50
3秒前
Linda完成签到 ,获得积分10
3秒前
SYLH应助科研通管家采纳,获得20
4秒前
英姑应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
wisdom应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
64658应助科研通管家采纳,获得10
4秒前
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
酷炫翠桃应助科研通管家采纳,获得10
4秒前
雷雨泽石完成签到,获得积分10
4秒前
4秒前
4秒前
Bonnie完成签到 ,获得积分20
5秒前
海风发布了新的文献求助10
5秒前
6秒前
燃燃完成签到 ,获得积分10
6秒前
6秒前
7秒前
7秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582