材料科学
热电效应
非谐性
晶体结构
热电材料
电子迁移率
功勋
能量转换效率
热导率
无量纲量
化学物理
凝聚态物理
光电子学
结晶学
热力学
复合材料
化学
物理
作者
Taras Parashchuk,Oleksandr Cherniushok,O.V. Smitiukh,О.V. Marchuk,Krzysztof Wojciechowski
标识
DOI:10.1021/acs.chemmater.3c00586
摘要
Lightweight diamond-like structure (DLS) materials are excellent candidates for thermoelectric (TE) applications due to their low costs, eco-friendly nature, and property stability. The main obstacles restricting the energy-conversion performance by the lightweight DLS materials are high lattice thermal conductivity and relatively low carrier mobility. By investigating the anion substitution effect on the structural, microstructural, electronic, and thermal properties of Cu2CoSnS4-xSex, we show that the simultaneous enhancement of the crystal symmetry and bonding inhomogeneity engineering are effective approaches to enhance the TE performance in lightweight DLS materials. Particularly, the increase of x in Cu2CoSnS4-xSex makes the DLS structure with the ideal tetrahedral bond angles of 109.5° favorable, leading to better crystal symmetry and higher carrier mobility in samples with higher selenium content. In turn, the phonon transport in the investigated DLS materials is strongly disturbed due to the bonding inhomogeneity between anions and three sorts of cations inducing large lattice anharmonicity. The increase of Se content in Cu2CoSnS4-xSex only intensified this effect resulting in a lower lattice component of the thermal conductivity (κL) for Se-rich samples. As a result of the enhanced power factor S2ρ-1 and the low κL, the dimensionless thermoelectric figure of merit ZT achieves a high value of 0.75 for Cu2CoSnSe4 DLS material. This work demonstrates that crystal symmetry and bonding inhomogeneity play an important role in the transport properties of DLS materials and provide a path for the development of new perspective materials for TE energy conversion.
科研通智能强力驱动
Strongly Powered by AbleSci AI