Development of Advanced Cfd-Based Model for Anion Exchange Membrane Water Electrolyzer

计算流体力学 电解 离子交换 环境科学 计算机科学 工艺工程 离子 化学工程 化学 工程类 电极 航空航天工程 有机化学 物理化学 电解质 生物化学
作者
Donggyun Lee,Minsu Kim,Jeongdong Kim,Junghwan Kim,Il Moon
标识
DOI:10.2139/ssrn.4487398
摘要

Recently, various computational fluid dynamics (CFD)-based water electrolysis models have been developed to analyze the internal phenomena of water electrolysis cells for green hydrogen production. Anion exchange membrane water (AEM) electrolysis is a promising and inexpensive solution to address hydrogen production and environmental issues. AEM electrolysis requires high fidelity to improve its durability, reliability, and efficiency, because of its low technical proficiency. In this study, a CFD-based model for AEM electrolysis was developed to analyze the three-dimensional and two-phase phenomena inside the cell. By combining electrochemical models with mass, momentum, and heat transfer models the temperature, pressure, and gas generation profiles inside the cell were studied. Parameters were estimation using the experimental data from a high-accuracy model. The results showed that the applied voltage, which determined the exothermic/endothermic mode, had a significant effect on the water electrolysis performance. The current density and activity of the gas generation reaction increased as the voltage increased. Specifically, in the exothermic mode, with voltages higher than the thermo-neutral voltage (1.48 V), the amount of hydrogen generated (28.15 and 32.75 mol/m3 at 1.7 and 2.0 V, respectively) was higher than that in the endothermic mode (11.92 mol/m3 at 1.45 V). However, the increased gas generation caused a rapid increase in the temperature and pressure drop inside the cell, which adversely affected the durability. The cell design also had a significant effect. The model developed in this study can be used in experiments of various scales to optimize serpentine designs and commercial AEM electrolysis stack developments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tiantian完成签到,获得积分10
刚刚
yjy9346完成签到,获得积分10
刚刚
Hello应助芜湖采纳,获得10
1秒前
3秒前
Chillyi完成签到,获得积分10
4秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
6秒前
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
Maestro_S应助科研通管家采纳,获得30
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
linnnn发布了新的文献求助10
6秒前
动次打次完成签到,获得积分0
7秒前
赘婿应助zhoushu采纳,获得10
7秒前
Paddi完成签到,获得积分10
8秒前
Owen应助XU2025采纳,获得10
8秒前
9秒前
Jox发布了新的文献求助10
9秒前
9秒前
10秒前
univ完成签到,获得积分10
10秒前
微笑以南完成签到,获得积分10
10秒前
Hello应助欣喜南莲采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
三山三完成签到,获得积分10
12秒前
13秒前
zym完成签到,获得积分10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602404
求助须知:如何正确求助?哪些是违规求助? 4011681
关于积分的说明 12419962
捐赠科研通 3691873
什么是DOI,文献DOI怎么找? 2035322
邀请新用户注册赠送积分活动 1068516
科研通“疑难数据库(出版商)”最低求助积分说明 953096