已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Adaptability Evaluation of the Spatiotemporal Fusion Model of Sentinel-2 and MODIS Data in a Typical Area of the Three-River Headwater Region

传感器融合 融合 遥感 归一化差异植被指数 卫星 时间分辨率 植被(病理学) 环境科学 图像分辨率 计算机科学 地理 人工智能 气候变化 地质学 工程类 量子力学 医学 海洋学 语言学 物理 哲学 病理 航空航天工程
作者
Mengyao Fan,Dawei Ma,Xianglin Huang,Ru An
出处
期刊:Sustainability [Multidisciplinary Digital Publishing Institute]
卷期号:15 (11): 8697-8697 被引量:3
标识
DOI:10.3390/su15118697
摘要

The study of surface vegetation monitoring in the “Three-River Headwaters” Region (TRHR) relies on satellite data with high spatial and temporal resolutions. The spatial and temporal fusion method for multiple data sources can effectively overcome the limitations of weather, the satellite return period, and funding on research data to obtain data higher spatial and temporal resolutions. This paper explores the spatial and temporal adaptive reflectance fusion model (STARFM), the enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM), and the flexible spatiotemporal data fusion (FSDAF) method applied to Sentinel-2 and MODIS data in a typical area of the TRHR. In this study, the control variable method was used to analyze the parameter sensitivity of the models and explore the adaptation parameters of the Sentinel-2 and MODIS data in the study area. Since the spatiotemporal fusion model was directly used in the product data of the vegetation index, this study used NDVI fusion as an example and set up a comparison experiment (experiment I first performed the band spatiotemporal fusion and then calculated the vegetation index; experiment II calculated the vegetation index first and then performed the spatiotemporal fusion) to explore the feasibility and applicability of the two methods for the vegetation index fusion. The results showed the following. (1) The three spatiotemporal fusion models generated high spatial resolution and high temporal resolution data based on the fusion of Sentinel-2 and MODIS data, the STARFM and FSDAF model had a higher fusion accuracy, and the R2 values after fusion were higher than 0.8, showing greater applicability. (2) The fusion accuracy of each model was affected by the model parameters. The errors between the STARFM, ESTARFM, and FSDAF fusion results and the validation data all showed a decreasing trend with an increase in the size of the sliding window or the number of similar pixels, which stabilized after the sliding window became larger than 50 and the similar pixels became larger than 80. (3) The comparative experimental results showed that the spatiotemporal fusion model can be directly fused based on the vegetation index products, and higher quality vegetation index data can be obtained by calculating the vegetation index first and then performing the spatiotemporal fusion. The high spatial and temporal resolution data obtained using a suitable spatial and temporal fusion model are important for the identification and monitoring of surface cover types in the TRHR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨千亦发布了新的文献求助10
1秒前
Dobby完成签到,获得积分10
2秒前
半城微凉完成签到,获得积分10
2秒前
愉快草莓发布了新的文献求助10
2秒前
愉快草莓完成签到,获得积分10
6秒前
8秒前
zuo完成签到,获得积分10
9秒前
沐沐心完成签到 ,获得积分10
10秒前
阉太狼完成签到,获得积分10
11秒前
sunhhhh完成签到 ,获得积分10
11秒前
12秒前
jinxli完成签到 ,获得积分10
17秒前
asd1576562308完成签到 ,获得积分10
23秒前
普通西瓜发布了新的文献求助10
24秒前
酒渡完成签到,获得积分10
24秒前
25秒前
Shrimp完成签到 ,获得积分10
28秒前
喜悦的小土豆完成签到 ,获得积分10
28秒前
欣慰宛菡发布了新的文献求助10
29秒前
Tendency完成签到 ,获得积分10
29秒前
丁静完成签到 ,获得积分10
31秒前
33秒前
悟川完成签到 ,获得积分10
33秒前
朴实的小萱完成签到 ,获得积分10
43秒前
Mono完成签到 ,获得积分10
44秒前
44秒前
46秒前
SDNUDRUG完成签到,获得积分10
50秒前
52秒前
鳗鱼惋庭发布了新的文献求助10
53秒前
小鱼儿发布了新的文献求助30
56秒前
57秒前
乐乐应助年少丶采纳,获得10
57秒前
Owen应助不安太阳采纳,获得10
57秒前
任性唇膏发布了新的文献求助10
59秒前
豌豆发布了新的文献求助10
1分钟前
养乐多敬你完成签到 ,获得积分10
1分钟前
小蘑菇应助欢喜的怜菡采纳,获得10
1分钟前
SciGPT应助悟空采纳,获得10
1分钟前
大个应助深巷南离木采纳,获得10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963143
求助须知:如何正确求助?哪些是违规求助? 3509015
关于积分的说明 11144838
捐赠科研通 3242023
什么是DOI,文献DOI怎么找? 1791708
邀请新用户注册赠送积分活动 873118
科研通“疑难数据库(出版商)”最低求助积分说明 803621