Adaptability Evaluation of the Spatiotemporal Fusion Model of Sentinel-2 and MODIS Data in a Typical Area of the Three-River Headwater Region

传感器融合 融合 遥感 归一化差异植被指数 卫星 时间分辨率 植被(病理学) 环境科学 图像分辨率 计算机科学 地理 人工智能 气候变化 地质学 工程类 医学 哲学 语言学 海洋学 物理 病理 量子力学 航空航天工程
作者
Mengyao Fan,Dawei Ma,Xianglin Huang,Ru An
出处
期刊:Sustainability [MDPI AG]
卷期号:15 (11): 8697-8697 被引量:3
标识
DOI:10.3390/su15118697
摘要

The study of surface vegetation monitoring in the “Three-River Headwaters” Region (TRHR) relies on satellite data with high spatial and temporal resolutions. The spatial and temporal fusion method for multiple data sources can effectively overcome the limitations of weather, the satellite return period, and funding on research data to obtain data higher spatial and temporal resolutions. This paper explores the spatial and temporal adaptive reflectance fusion model (STARFM), the enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM), and the flexible spatiotemporal data fusion (FSDAF) method applied to Sentinel-2 and MODIS data in a typical area of the TRHR. In this study, the control variable method was used to analyze the parameter sensitivity of the models and explore the adaptation parameters of the Sentinel-2 and MODIS data in the study area. Since the spatiotemporal fusion model was directly used in the product data of the vegetation index, this study used NDVI fusion as an example and set up a comparison experiment (experiment I first performed the band spatiotemporal fusion and then calculated the vegetation index; experiment II calculated the vegetation index first and then performed the spatiotemporal fusion) to explore the feasibility and applicability of the two methods for the vegetation index fusion. The results showed the following. (1) The three spatiotemporal fusion models generated high spatial resolution and high temporal resolution data based on the fusion of Sentinel-2 and MODIS data, the STARFM and FSDAF model had a higher fusion accuracy, and the R2 values after fusion were higher than 0.8, showing greater applicability. (2) The fusion accuracy of each model was affected by the model parameters. The errors between the STARFM, ESTARFM, and FSDAF fusion results and the validation data all showed a decreasing trend with an increase in the size of the sliding window or the number of similar pixels, which stabilized after the sliding window became larger than 50 and the similar pixels became larger than 80. (3) The comparative experimental results showed that the spatiotemporal fusion model can be directly fused based on the vegetation index products, and higher quality vegetation index data can be obtained by calculating the vegetation index first and then performing the spatiotemporal fusion. The high spatial and temporal resolution data obtained using a suitable spatial and temporal fusion model are important for the identification and monitoring of surface cover types in the TRHR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lgz完成签到,获得积分10
刚刚
仁爱秀完成签到,获得积分20
1秒前
慕青应助少夫人采纳,获得30
2秒前
melon发布了新的文献求助20
3秒前
3秒前
4秒前
dada完成签到,获得积分10
4秒前
5秒前
Orange应助衞凌采纳,获得10
5秒前
5秒前
5秒前
十月完成签到 ,获得积分20
6秒前
岁月流年完成签到,获得积分10
6秒前
lgz发布了新的文献求助30
6秒前
9秒前
涛哥发布了新的文献求助10
10秒前
月亮完成签到 ,获得积分10
11秒前
呵呵完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
melon完成签到,获得积分10
14秒前
16秒前
lyn发布了新的文献求助20
16秒前
小兔叽完成签到,获得积分10
16秒前
Jasper应助多喝水采纳,获得10
17秒前
melon发布了新的文献求助10
17秒前
17秒前
18秒前
丰富钢铁侠完成签到,获得积分10
18秒前
tuanheqi应助论文发表采纳,获得50
18秒前
天天向上发布了新的文献求助10
18秒前
20秒前
lql完成签到,获得积分10
20秒前
20秒前
鲤鱼初柳发布了新的文献求助10
21秒前
superbada发布了新的文献求助10
22秒前
外向谷菱发布了新的文献求助10
22秒前
DONNYTIO发布了新的文献求助30
23秒前
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292958
求助须知:如何正确求助?哪些是违规求助? 2929196
关于积分的说明 8440508
捐赠科研通 2601259
什么是DOI,文献DOI怎么找? 1419675
科研通“疑难数据库(出版商)”最低求助积分说明 660355
邀请新用户注册赠送积分活动 643029