Auto-encoder design based on the 1D-VD-CNN model for the detection of honeysuckle from unknown origin

金银花 卷积神经网络 编码器 模式识别(心理学) 卷积(计算机科学) 人工智能 集合(抽象数据类型) 计算机科学 数据集 人工神经网络 抽取 算法 计算机视觉 医学 替代医学 滤波器(信号处理) 病理 中医药 程序设计语言 操作系统
作者
Dongying Chen,Hao Zhang,Lingyan Lin,Zilong Zhang,Jian Zeng,Lu Chen,Xiaogang Chen
出处
期刊:Journal of Pharmaceutical and Biomedical Analysis [Elsevier]
卷期号:234: 115572-115572 被引量:2
标识
DOI:10.1016/j.jpba.2023.115572
摘要

The disadvantages of the traditional one-dimensional convolution neural network (1D-CNN) model based on honeysuckle near-infrared spectral data (NIRS) include high parameter quantity, low efficiency, and inability to identify unknown categories effectively. In this paper, we propose a one-dimensional very deep convolution neural network (1D-VD-CNN) and design an auto-encoder mechanism for detecting honeysuckle from unexplored habitats. First, the 1D-VD-CNN model uses the efficient very deep (VD) structure to replace the hidden layer structure in the traditional 1D-CNN model. The model can be directly applied to analyze one-dimensional near-infrared spectral data (NIRS). Second, combining the reconstruction error of the auto-encoder, a honeysuckle identification method considering an unknown origin is designed, which can solve the problem of high confidence in convolution neural networks by using an auto-encoder and reconstruction errors of the samples to be tested. Whether the sample is an unknown variety can be determined by comparing the corrected confidence level with the preset threshold value. The results show that the accuracy of the 1D-VD-CNN training set and test set is 100%, and the loss value converges to 0.001. Compared with the traditional 1D-CNN model, the parameters and FLOPs are reduced by nearly 71% and 8%, respectively. At the same time, compared with the NIRS analysis and the PLS-DA method, the 1D-VD-CNN model has higher efficiency and better recognition performance for honeysuckle near-infrared spectral classification. Meanwhile, the accuracy rate of the auto-encoder for the category detection mechanism of honeysuckle from an unknown origin is 98%. The model can quickly and efficiently classify honeysuckle from different habitats and detect honeysuckle from unexplored habitats.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
纯真的柔发布了新的文献求助10
刚刚
刚刚
SRsora完成签到,获得积分10
刚刚
大胆冰岚完成签到,获得积分10
刚刚
1秒前
满增明完成签到,获得积分10
1秒前
解语花发布了新的文献求助100
1秒前
xyz完成签到,获得积分10
1秒前
wwy727完成签到 ,获得积分10
2秒前
Jcccc发布了新的文献求助10
2秒前
有魅力的小蜜蜂完成签到,获得积分10
2秒前
CHENG_2025完成签到,获得积分10
2秒前
Wind应助杨一乐采纳,获得10
3秒前
4秒前
ajun完成签到,获得积分10
4秒前
5秒前
5秒前
野椰完成签到 ,获得积分10
5秒前
王浩发布了新的文献求助10
5秒前
富贵儿完成签到,获得积分20
6秒前
超哥完成签到,获得积分10
6秒前
6秒前
玊尔吡咯烷酮完成签到,获得积分10
6秒前
Hu完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
温婉的谷菱完成签到,获得积分10
7秒前
7秒前
平常的夏菡完成签到,获得积分10
8秒前
水水完成签到,获得积分10
8秒前
莽哥发布了新的文献求助10
9秒前
科研阳完成签到,获得积分10
9秒前
妖哥完成签到,获得积分10
10秒前
野椰关注了科研通微信公众号
10秒前
10秒前
安烁完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
11秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585741
求助须知:如何正确求助?哪些是违规求助? 4669361
关于积分的说明 14776911
捐赠科研通 4618356
什么是DOI,文献DOI怎么找? 2530650
邀请新用户注册赠送积分活动 1499380
关于科研通互助平台的介绍 1467750