Auto-encoder design based on the 1D-VD-CNN model for the detection of honeysuckle from unknown origin

金银花 卷积神经网络 编码器 模式识别(心理学) 卷积(计算机科学) 人工智能 集合(抽象数据类型) 计算机科学 数据集 人工神经网络 抽取 算法 计算机视觉 医学 替代医学 滤波器(信号处理) 病理 中医药 程序设计语言 操作系统
作者
Dongying Chen,Hao Zhang,Lingyan Lin,Zilong Zhang,Jian Zeng,Lu Chen,Xiaogang Chen
出处
期刊:Journal of Pharmaceutical and Biomedical Analysis [Elsevier BV]
卷期号:234: 115572-115572 被引量:2
标识
DOI:10.1016/j.jpba.2023.115572
摘要

The disadvantages of the traditional one-dimensional convolution neural network (1D-CNN) model based on honeysuckle near-infrared spectral data (NIRS) include high parameter quantity, low efficiency, and inability to identify unknown categories effectively. In this paper, we propose a one-dimensional very deep convolution neural network (1D-VD-CNN) and design an auto-encoder mechanism for detecting honeysuckle from unexplored habitats. First, the 1D-VD-CNN model uses the efficient very deep (VD) structure to replace the hidden layer structure in the traditional 1D-CNN model. The model can be directly applied to analyze one-dimensional near-infrared spectral data (NIRS). Second, combining the reconstruction error of the auto-encoder, a honeysuckle identification method considering an unknown origin is designed, which can solve the problem of high confidence in convolution neural networks by using an auto-encoder and reconstruction errors of the samples to be tested. Whether the sample is an unknown variety can be determined by comparing the corrected confidence level with the preset threshold value. The results show that the accuracy of the 1D-VD-CNN training set and test set is 100%, and the loss value converges to 0.001. Compared with the traditional 1D-CNN model, the parameters and FLOPs are reduced by nearly 71% and 8%, respectively. At the same time, compared with the NIRS analysis and the PLS-DA method, the 1D-VD-CNN model has higher efficiency and better recognition performance for honeysuckle near-infrared spectral classification. Meanwhile, the accuracy rate of the auto-encoder for the category detection mechanism of honeysuckle from an unknown origin is 98%. The model can quickly and efficiently classify honeysuckle from different habitats and detect honeysuckle from unexplored habitats.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
司空笑白发布了新的文献求助10
2秒前
stepha完成签到,获得积分10
2秒前
yeyeye发布了新的文献求助10
2秒前
云之南完成签到,获得积分20
3秒前
3秒前
啦啦啦发布了新的文献求助10
4秒前
4秒前
7秒前
kyoko886完成签到,获得积分10
7秒前
wu8577应助小猪玉采纳,获得10
7秒前
wenxian完成签到,获得积分10
10秒前
xiaozhao发布了新的文献求助150
10秒前
10秒前
10秒前
FashionBoy应助司空笑白采纳,获得10
12秒前
13秒前
14秒前
Merlin应助陈三三采纳,获得30
14秒前
嗯嗯嗯发布了新的文献求助10
17秒前
白羊完成签到,获得积分10
17秒前
chensihao发布了新的文献求助10
18秒前
谦让的莆完成签到 ,获得积分10
18秒前
李爱国应助xiaohong采纳,获得10
19秒前
21秒前
梦灵发布了新的文献求助10
22秒前
123456发布了新的文献求助10
22秒前
充电宝应助Wang采纳,获得10
23秒前
简时完成签到 ,获得积分10
23秒前
24秒前
26秒前
27秒前
27秒前
29秒前
squirrelcone发布了新的文献求助30
30秒前
啦啦啦完成签到,获得积分20
30秒前
rena发布了新的文献求助10
30秒前
31秒前
淡然问儿发布了新的文献求助10
32秒前
33秒前
燕尔蓝完成签到,获得积分10
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958114
求助须知:如何正确求助?哪些是违规求助? 3504298
关于积分的说明 11117743
捐赠科研通 3235614
什么是DOI,文献DOI怎么找? 1788403
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802547