Auto-encoder design based on the 1D-VD-CNN model for the detection of honeysuckle from unknown origin

金银花 卷积神经网络 编码器 模式识别(心理学) 卷积(计算机科学) 人工智能 集合(抽象数据类型) 计算机科学 数据集 人工神经网络 抽取 算法 计算机视觉 医学 替代医学 滤波器(信号处理) 病理 中医药 程序设计语言 操作系统
作者
Dongying Chen,Hao Zhang,Lingyan Lin,Zilong Zhang,Jian Zeng,Lu Chen,Xiaogang Chen
出处
期刊:Journal of Pharmaceutical and Biomedical Analysis [Elsevier BV]
卷期号:234: 115572-115572 被引量:2
标识
DOI:10.1016/j.jpba.2023.115572
摘要

The disadvantages of the traditional one-dimensional convolution neural network (1D-CNN) model based on honeysuckle near-infrared spectral data (NIRS) include high parameter quantity, low efficiency, and inability to identify unknown categories effectively. In this paper, we propose a one-dimensional very deep convolution neural network (1D-VD-CNN) and design an auto-encoder mechanism for detecting honeysuckle from unexplored habitats. First, the 1D-VD-CNN model uses the efficient very deep (VD) structure to replace the hidden layer structure in the traditional 1D-CNN model. The model can be directly applied to analyze one-dimensional near-infrared spectral data (NIRS). Second, combining the reconstruction error of the auto-encoder, a honeysuckle identification method considering an unknown origin is designed, which can solve the problem of high confidence in convolution neural networks by using an auto-encoder and reconstruction errors of the samples to be tested. Whether the sample is an unknown variety can be determined by comparing the corrected confidence level with the preset threshold value. The results show that the accuracy of the 1D-VD-CNN training set and test set is 100%, and the loss value converges to 0.001. Compared with the traditional 1D-CNN model, the parameters and FLOPs are reduced by nearly 71% and 8%, respectively. At the same time, compared with the NIRS analysis and the PLS-DA method, the 1D-VD-CNN model has higher efficiency and better recognition performance for honeysuckle near-infrared spectral classification. Meanwhile, the accuracy rate of the auto-encoder for the category detection mechanism of honeysuckle from an unknown origin is 98%. The model can quickly and efficiently classify honeysuckle from different habitats and detect honeysuckle from unexplored habitats.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十三不靠发布了新的文献求助10
1秒前
semigreen发布了新的文献求助10
1秒前
完美世界应助gwentea采纳,获得10
1秒前
李爱国应助自由的馒头采纳,获得10
1秒前
顾年完成签到,获得积分20
1秒前
loong发布了新的文献求助10
2秒前
2秒前
2秒前
高高烨磊完成签到,获得积分20
2秒前
冬日毛衣应助737采纳,获得10
2秒前
朴实曼岚完成签到,获得积分10
2秒前
2秒前
3秒前
user发布了新的文献求助10
4秒前
万能图书馆应助aaa采纳,获得10
4秒前
4秒前
风吹似夏完成签到,获得积分10
4秒前
hhh完成签到,获得积分20
5秒前
5秒前
高大的觅松完成签到,获得积分20
6秒前
6秒前
soso发布了新的文献求助10
6秒前
领导范儿应助ShuY采纳,获得10
6秒前
zzwwill完成签到,获得积分10
7秒前
7秒前
小二郎应助南松采纳,获得10
7秒前
7秒前
munire发布了新的文献求助10
7秒前
7秒前
Orange应助loong采纳,获得10
7秒前
青黄发布了新的文献求助10
7秒前
张和云完成签到,获得积分10
8秒前
lihua完成签到,获得积分10
10秒前
羊羊羊发布了新的文献求助30
10秒前
11秒前
11秒前
zhui发布了新的文献求助10
11秒前
没有梦想发布了新的文献求助10
11秒前
Yonina发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403