Auto-encoder design based on the 1D-VD-CNN model for the detection of honeysuckle from unknown origin

金银花 卷积神经网络 编码器 模式识别(心理学) 卷积(计算机科学) 人工智能 集合(抽象数据类型) 计算机科学 数据集 人工神经网络 抽取 算法 计算机视觉 病理 操作系统 滤波器(信号处理) 中医药 程序设计语言 替代医学 医学
作者
Dongying Chen,Hao Zhang,Lingyan Lin,Zilong Zhang,Jian Zeng,Lu Chen,Xiaogang Chen
出处
期刊:Journal of Pharmaceutical and Biomedical Analysis [Elsevier]
卷期号:234: 115572-115572 被引量:2
标识
DOI:10.1016/j.jpba.2023.115572
摘要

The disadvantages of the traditional one-dimensional convolution neural network (1D-CNN) model based on honeysuckle near-infrared spectral data (NIRS) include high parameter quantity, low efficiency, and inability to identify unknown categories effectively. In this paper, we propose a one-dimensional very deep convolution neural network (1D-VD-CNN) and design an auto-encoder mechanism for detecting honeysuckle from unexplored habitats. First, the 1D-VD-CNN model uses the efficient very deep (VD) structure to replace the hidden layer structure in the traditional 1D-CNN model. The model can be directly applied to analyze one-dimensional near-infrared spectral data (NIRS). Second, combining the reconstruction error of the auto-encoder, a honeysuckle identification method considering an unknown origin is designed, which can solve the problem of high confidence in convolution neural networks by using an auto-encoder and reconstruction errors of the samples to be tested. Whether the sample is an unknown variety can be determined by comparing the corrected confidence level with the preset threshold value. The results show that the accuracy of the 1D-VD-CNN training set and test set is 100%, and the loss value converges to 0.001. Compared with the traditional 1D-CNN model, the parameters and FLOPs are reduced by nearly 71% and 8%, respectively. At the same time, compared with the NIRS analysis and the PLS-DA method, the 1D-VD-CNN model has higher efficiency and better recognition performance for honeysuckle near-infrared spectral classification. Meanwhile, the accuracy rate of the auto-encoder for the category detection mechanism of honeysuckle from an unknown origin is 98%. The model can quickly and efficiently classify honeysuckle from different habitats and detect honeysuckle from unexplored habitats.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆萌安双发布了新的文献求助10
刚刚
京城不降雪c完成签到,获得积分10
1秒前
yaya发布了新的文献求助10
1秒前
Owen应助大炮弹采纳,获得10
1秒前
听风雨发布了新的文献求助10
1秒前
羡鱼发布了新的文献求助10
1秒前
缥缈的水彤完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
失眠的数据线完成签到,获得积分10
2秒前
2秒前
烁烁子完成签到,获得积分20
3秒前
胡春柳应助lucinda采纳,获得10
3秒前
1351567822应助啊懂采纳,获得80
3秒前
俭朴外绣发布了新的文献求助10
3秒前
乐乐应助复杂海豚采纳,获得10
3秒前
3秒前
4秒前
dh发布了新的文献求助10
4秒前
Stefano完成签到,获得积分10
4秒前
4秒前
完美世界应助念薇采纳,获得10
4秒前
郭倍坚发布了新的文献求助10
5秒前
年轻绮南完成签到,获得积分10
5秒前
ROSE完成签到 ,获得积分10
5秒前
斯文败类应助红3采纳,获得10
6秒前
Ccc发布了新的文献求助30
6秒前
6秒前
6秒前
典雅之云完成签到,获得积分10
6秒前
慕容誉完成签到 ,获得积分10
6秒前
斯文败类应助yimi采纳,获得10
6秒前
SciGPT应助有魅力的猫咪采纳,获得10
7秒前
7秒前
在下小李发布了新的文献求助10
7秒前
8秒前
8秒前
不得发布了新的文献求助20
8秒前
夏夏发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625290
求助须知:如何正确求助?哪些是违规求助? 4711149
关于积分的说明 14954048
捐赠科研通 4779211
什么是DOI,文献DOI怎么找? 2553684
邀请新用户注册赠送积分活动 1515632
关于科研通互助平台的介绍 1475827