Auto-encoder design based on the 1D-VD-CNN model for the detection of honeysuckle from unknown origin

金银花 卷积神经网络 编码器 模式识别(心理学) 卷积(计算机科学) 人工智能 集合(抽象数据类型) 计算机科学 数据集 人工神经网络 抽取 算法 计算机视觉 医学 替代医学 滤波器(信号处理) 病理 中医药 程序设计语言 操作系统
作者
Dongying Chen,Hao Zhang,Lingyan Lin,Zilong Zhang,Jian Zeng,Lu Chen,Xiaogang Chen
出处
期刊:Journal of Pharmaceutical and Biomedical Analysis [Elsevier]
卷期号:234: 115572-115572 被引量:1
标识
DOI:10.1016/j.jpba.2023.115572
摘要

The disadvantages of the traditional one-dimensional convolution neural network (1D-CNN) model based on honeysuckle near-infrared spectral data (NIRS) include high parameter quantity, low efficiency, and inability to identify unknown categories effectively. In this paper, we propose a one-dimensional very deep convolution neural network (1D-VD-CNN) and design an auto-encoder mechanism for detecting honeysuckle from unexplored habitats. First, the 1D-VD-CNN model uses the efficient very deep (VD) structure to replace the hidden layer structure in the traditional 1D-CNN model. The model can be directly applied to analyze one-dimensional near-infrared spectral data (NIRS). Second, combining the reconstruction error of the auto-encoder, a honeysuckle identification method considering an unknown origin is designed, which can solve the problem of high confidence in convolution neural networks by using an auto-encoder and reconstruction errors of the samples to be tested. Whether the sample is an unknown variety can be determined by comparing the corrected confidence level with the preset threshold value. The results show that the accuracy of the 1D-VD-CNN training set and test set is 100%, and the loss value converges to 0.001. Compared with the traditional 1D-CNN model, the parameters and FLOPs are reduced by nearly 71% and 8%, respectively. At the same time, compared with the NIRS analysis and the PLS-DA method, the 1D-VD-CNN model has higher efficiency and better recognition performance for honeysuckle near-infrared spectral classification. Meanwhile, the accuracy rate of the auto-encoder for the category detection mechanism of honeysuckle from an unknown origin is 98%. The model can quickly and efficiently classify honeysuckle from different habitats and detect honeysuckle from unexplored habitats.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XuXIkai发布了新的文献求助10
刚刚
完美世界应助春夏采纳,获得10
1秒前
DZQ完成签到,获得积分10
1秒前
zlf完成签到,获得积分10
1秒前
gdh发布了新的文献求助10
2秒前
ahai完成签到 ,获得积分10
2秒前
情怀应助yfw采纳,获得10
2秒前
himes完成签到,获得积分10
2秒前
我是老大应助Kk采纳,获得10
2秒前
3秒前
4秒前
FUTURE完成签到,获得积分10
5秒前
6秒前
Tink完成签到,获得积分10
6秒前
天工开物发布了新的文献求助10
8秒前
潇洒的思山完成签到,获得积分10
8秒前
亵渎完成签到,获得积分10
12秒前
lilyliu完成签到,获得积分10
13秒前
Vv完成签到,获得积分20
15秒前
15秒前
一anjf完成签到,获得积分10
16秒前
香蕉觅云应助yxy采纳,获得10
16秒前
高海龙完成签到,获得积分10
16秒前
共享精神应助Ssyong采纳,获得10
19秒前
19秒前
cjh174完成签到,获得积分10
20秒前
无花果应助锦鲤嘟嘟嘟采纳,获得10
21秒前
思源应助wayhome采纳,获得10
21秒前
youhebuke发布了新的文献求助10
22秒前
23秒前
23秒前
huan完成签到 ,获得积分10
23秒前
饼饼完成签到,获得积分10
23秒前
流露完成签到,获得积分10
24秒前
David完成签到,获得积分10
27秒前
zhu发布了新的文献求助10
27秒前
zhangnan发布了新的文献求助10
28秒前
wp4455777完成签到,获得积分10
30秒前
David发布了新的文献求助10
30秒前
30秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137721
求助须知:如何正确求助?哪些是违规求助? 2788646
关于积分的说明 7787887
捐赠科研通 2445011
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601043