Auto-encoder design based on the 1D-VD-CNN model for the detection of honeysuckle from unknown origin

金银花 卷积神经网络 编码器 模式识别(心理学) 卷积(计算机科学) 人工智能 集合(抽象数据类型) 计算机科学 数据集 人工神经网络 抽取 算法 计算机视觉 医学 替代医学 滤波器(信号处理) 病理 中医药 程序设计语言 操作系统
作者
Dongying Chen,Hao Zhang,Lingyan Lin,Zilong Zhang,Jian Zeng,Lu Chen,Xiaogang Chen
出处
期刊:Journal of Pharmaceutical and Biomedical Analysis [Elsevier]
卷期号:234: 115572-115572 被引量:2
标识
DOI:10.1016/j.jpba.2023.115572
摘要

The disadvantages of the traditional one-dimensional convolution neural network (1D-CNN) model based on honeysuckle near-infrared spectral data (NIRS) include high parameter quantity, low efficiency, and inability to identify unknown categories effectively. In this paper, we propose a one-dimensional very deep convolution neural network (1D-VD-CNN) and design an auto-encoder mechanism for detecting honeysuckle from unexplored habitats. First, the 1D-VD-CNN model uses the efficient very deep (VD) structure to replace the hidden layer structure in the traditional 1D-CNN model. The model can be directly applied to analyze one-dimensional near-infrared spectral data (NIRS). Second, combining the reconstruction error of the auto-encoder, a honeysuckle identification method considering an unknown origin is designed, which can solve the problem of high confidence in convolution neural networks by using an auto-encoder and reconstruction errors of the samples to be tested. Whether the sample is an unknown variety can be determined by comparing the corrected confidence level with the preset threshold value. The results show that the accuracy of the 1D-VD-CNN training set and test set is 100%, and the loss value converges to 0.001. Compared with the traditional 1D-CNN model, the parameters and FLOPs are reduced by nearly 71% and 8%, respectively. At the same time, compared with the NIRS analysis and the PLS-DA method, the 1D-VD-CNN model has higher efficiency and better recognition performance for honeysuckle near-infrared spectral classification. Meanwhile, the accuracy rate of the auto-encoder for the category detection mechanism of honeysuckle from an unknown origin is 98%. The model can quickly and efficiently classify honeysuckle from different habitats and detect honeysuckle from unexplored habitats.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
赵十一完成签到,获得积分10
1秒前
今后应助我真的不是robot采纳,获得10
2秒前
自觉的绮烟完成签到,获得积分10
2秒前
2秒前
11发布了新的文献求助10
2秒前
垃圾智造者完成签到,获得积分10
3秒前
4秒前
天气很好我很好关注了科研通微信公众号
4秒前
缥缈凡旋完成签到,获得积分10
4秒前
buqi完成签到,获得积分10
5秒前
5秒前
6秒前
研友_VZG7GZ应助文艺安筠采纳,获得10
6秒前
顾矜应助扶风阁主采纳,获得10
7秒前
wanna完成签到,获得积分10
8秒前
ZJFL完成签到,获得积分10
9秒前
坦率尔蝶完成签到 ,获得积分10
9秒前
meng发布了新的文献求助10
10秒前
pluvia完成签到,获得积分10
10秒前
Urologyzz发布了新的文献求助10
11秒前
11秒前
11秒前
FFFFFF完成签到,获得积分10
12秒前
Jane完成签到,获得积分10
14秒前
晨晨完成签到 ,获得积分10
14秒前
bioinforiver发布了新的文献求助10
15秒前
陈转霞发布了新的文献求助10
16秒前
郁浅应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
Hello应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
17秒前
852应助科研通管家采纳,获得10
17秒前
Momomo应助科研通管家采纳,获得10
17秒前
英姑应助科研通管家采纳,获得10
17秒前
小蘑菇应助科研通管家采纳,获得10
17秒前
一一应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
bkagyin应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
orixero应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495259
求助须知:如何正确求助?哪些是违规求助? 4592967
关于积分的说明 14439338
捐赠科研通 4525803
什么是DOI,文献DOI怎么找? 2479715
邀请新用户注册赠送积分活动 1464544
关于科研通互助平台的介绍 1437385