Auto-encoder design based on the 1D-VD-CNN model for the detection of honeysuckle from unknown origin

金银花 卷积神经网络 编码器 模式识别(心理学) 卷积(计算机科学) 人工智能 集合(抽象数据类型) 计算机科学 数据集 人工神经网络 抽取 算法 计算机视觉 病理 操作系统 滤波器(信号处理) 中医药 程序设计语言 替代医学 医学
作者
Dongying Chen,Hao Zhang,Lingyan Lin,Zilong Zhang,Jian Zeng,Lu Chen,Xiaogang Chen
出处
期刊:Journal of Pharmaceutical and Biomedical Analysis [Elsevier]
卷期号:234: 115572-115572 被引量:2
标识
DOI:10.1016/j.jpba.2023.115572
摘要

The disadvantages of the traditional one-dimensional convolution neural network (1D-CNN) model based on honeysuckle near-infrared spectral data (NIRS) include high parameter quantity, low efficiency, and inability to identify unknown categories effectively. In this paper, we propose a one-dimensional very deep convolution neural network (1D-VD-CNN) and design an auto-encoder mechanism for detecting honeysuckle from unexplored habitats. First, the 1D-VD-CNN model uses the efficient very deep (VD) structure to replace the hidden layer structure in the traditional 1D-CNN model. The model can be directly applied to analyze one-dimensional near-infrared spectral data (NIRS). Second, combining the reconstruction error of the auto-encoder, a honeysuckle identification method considering an unknown origin is designed, which can solve the problem of high confidence in convolution neural networks by using an auto-encoder and reconstruction errors of the samples to be tested. Whether the sample is an unknown variety can be determined by comparing the corrected confidence level with the preset threshold value. The results show that the accuracy of the 1D-VD-CNN training set and test set is 100%, and the loss value converges to 0.001. Compared with the traditional 1D-CNN model, the parameters and FLOPs are reduced by nearly 71% and 8%, respectively. At the same time, compared with the NIRS analysis and the PLS-DA method, the 1D-VD-CNN model has higher efficiency and better recognition performance for honeysuckle near-infrared spectral classification. Meanwhile, the accuracy rate of the auto-encoder for the category detection mechanism of honeysuckle from an unknown origin is 98%. The model can quickly and efficiently classify honeysuckle from different habitats and detect honeysuckle from unexplored habitats.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NN发布了新的文献求助30
刚刚
小乔应助michael采纳,获得10
刚刚
ZOE应助9699采纳,获得50
刚刚
jasmineee完成签到 ,获得积分10
1秒前
Twonej给丫丫的求助进行了留言
1秒前
rumor发布了新的文献求助10
1秒前
Jasper应助跳跃小伙采纳,获得100
2秒前
wanwuzhumu发布了新的文献求助10
2秒前
小劉同志关注了科研通微信公众号
2秒前
林夕完成签到 ,获得积分10
2秒前
柔弱的老三完成签到 ,获得积分10
2秒前
3秒前
CadoreK完成签到 ,获得积分10
3秒前
landy完成签到 ,获得积分10
4秒前
舒心幻竹完成签到 ,获得积分10
4秒前
5秒前
5秒前
5秒前
FashionBoy应助pamela采纳,获得10
6秒前
7秒前
522完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
脉动完成签到,获得积分10
9秒前
9秒前
fantastic完成签到,获得积分10
10秒前
Jero完成签到 ,获得积分10
10秒前
rrrr发布了新的文献求助10
10秒前
浮游应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
12秒前
12秒前
香蕉诗蕊应助科研通管家采纳,获得10
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
小小应助科研通管家采纳,获得10
12秒前
小小应助科研通管家采纳,获得20
12秒前
小小应助科研通管家采纳,获得10
12秒前
小小应助科研通管家采纳,获得10
12秒前
小小应助科研通管家采纳,获得30
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646330
求助须知:如何正确求助?哪些是违规求助? 4770916
关于积分的说明 15034350
捐赠科研通 4805112
什么是DOI,文献DOI怎么找? 2569392
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812