Fault detection in wind turbine generators using a meta-learning-based convolutional neural network

涡轮机 计算机科学 故障检测与隔离 人工智能 风力发电 断层(地质) 卷积神经网络 人工神经网络 机器学习 模式识别(心理学) 工程类 地质学 电气工程 航空航天工程 执行机构 地震学
作者
Likui Qiao,Yuxian Zhang,Qisen Wang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:200: 110528-110528 被引量:25
标识
DOI:10.1016/j.ymssp.2023.110528
摘要

Conventional fault detection methods for wind turbine (WT) generators often grapple with inadequate warning times and poor portability. These issues contribute to heightened safety risks and an increased false positive rate (FPR) and false negative rate (FNR). This study introduces a fault detection method for WT generators utilizing a 1D convolutional neural network (1DCNN) based on meta-learning principles. We incorporate the ”learning to learn” concept of model-agnostic meta-learning (MAML) into a 1DCNN, enabling effective fault detection. More specifically, the training data are transformed into numerous tasks through random sampling, and the model is trained task by task. The 1DCNN is utilized as the base learner, leveraging its superior feature extraction capability to discern task features. The first-order gradient of MAML is applied to ascertain the specific initialization parameters for each task, while the second-order gradient of MAML is used to understand the similarities and differences between all tasks’ initialization parameters. This approach equips the 1DCNN-MAML with the ability to adapt to new tasks and converge rapidly, thereby achieving swift regression prediction. We also employ the probability distribution fitting method to analyze the distribution of prediction residuals, thus setting the detection threshold. Based on this threshold, warnings can be issued for faults in WT generators. We used supervisory control and data acquisition (SCADA) data from the Liaoning wind farm in China to validate the robustness and portability of the proposed model. Experimental outcomes indicate that, compared with Reptile, FOMAML, LSTM-MAML, 1DCNN, and LSTM, our proposed method can detect faults earliest across different wind turbines and has the lowest FPR and FNR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
尖尖完成签到,获得积分10
1秒前
1秒前
2秒前
无极微光应助十五离别后采纳,获得20
2秒前
2秒前
2秒前
2秒前
小二郎应助涨涨涨采纳,获得10
3秒前
俭朴果汁完成签到,获得积分10
4秒前
ddlm发布了新的文献求助10
4秒前
5秒前
冥土追魂发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
一颗橙子发布了新的文献求助10
7秒前
7秒前
林兰特完成签到,获得积分10
8秒前
倾卿如玉完成签到 ,获得积分10
9秒前
greenlu完成签到,获得积分10
9秒前
CipherSage应助粥粥sqk采纳,获得10
9秒前
sunshine发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
Bellona发布了新的文献求助10
11秒前
12秒前
shooin发布了新的文献求助10
13秒前
研友_VZG7GZ应助ACE采纳,获得10
13秒前
14秒前
sterkiller完成签到 ,获得积分10
14秒前
Mia发布了新的文献求助10
15秒前
杨武天一发布了新的文献求助30
16秒前
义气严青发布了新的文献求助10
17秒前
18秒前
柯林完成签到,获得积分10
18秒前
虞智闳发布了新的文献求助10
19秒前
烜66发布了新的文献求助10
19秒前
21秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443159
求助须知:如何正确求助?哪些是违规求助? 4553068
关于积分的说明 14240935
捐赠科研通 4474702
什么是DOI,文献DOI怎么找? 2452098
邀请新用户注册赠送积分活动 1443060
关于科研通互助平台的介绍 1418705