Fault detection in wind turbine generators using a meta-learning-based convolutional neural network

涡轮机 计算机科学 故障检测与隔离 人工智能 风力发电 断层(地质) 卷积神经网络 人工神经网络 机器学习 模式识别(心理学) 工程类 地质学 电气工程 航空航天工程 执行机构 地震学
作者
Likui Qiao,Yuxian Zhang,Qisen Wang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:200: 110528-110528 被引量:25
标识
DOI:10.1016/j.ymssp.2023.110528
摘要

Conventional fault detection methods for wind turbine (WT) generators often grapple with inadequate warning times and poor portability. These issues contribute to heightened safety risks and an increased false positive rate (FPR) and false negative rate (FNR). This study introduces a fault detection method for WT generators utilizing a 1D convolutional neural network (1DCNN) based on meta-learning principles. We incorporate the ”learning to learn” concept of model-agnostic meta-learning (MAML) into a 1DCNN, enabling effective fault detection. More specifically, the training data are transformed into numerous tasks through random sampling, and the model is trained task by task. The 1DCNN is utilized as the base learner, leveraging its superior feature extraction capability to discern task features. The first-order gradient of MAML is applied to ascertain the specific initialization parameters for each task, while the second-order gradient of MAML is used to understand the similarities and differences between all tasks’ initialization parameters. This approach equips the 1DCNN-MAML with the ability to adapt to new tasks and converge rapidly, thereby achieving swift regression prediction. We also employ the probability distribution fitting method to analyze the distribution of prediction residuals, thus setting the detection threshold. Based on this threshold, warnings can be issued for faults in WT generators. We used supervisory control and data acquisition (SCADA) data from the Liaoning wind farm in China to validate the robustness and portability of the proposed model. Experimental outcomes indicate that, compared with Reptile, FOMAML, LSTM-MAML, 1DCNN, and LSTM, our proposed method can detect faults earliest across different wind turbines and has the lowest FPR and FNR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可靠若云发布了新的文献求助10
刚刚
guo发布了新的文献求助10
1秒前
3秒前
orixero应助梧wu采纳,获得10
3秒前
lyx发布了新的文献求助10
4秒前
bkagyin应助小迪采纳,获得10
4秒前
qianqiu发布了新的文献求助10
5秒前
5秒前
5秒前
科研通AI6应助鲜艳的亿先采纳,获得30
6秒前
科研通AI6应助乔木采纳,获得10
7秒前
jazzmantan发布了新的文献求助10
7秒前
spzdss发布了新的文献求助20
7秒前
lingzi1015完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
gis_xu发布了新的文献求助10
9秒前
10秒前
11秒前
陈一完成签到 ,获得积分10
11秒前
香蕉觅云应助年华采纳,获得10
13秒前
夏侯幻梦完成签到 ,获得积分10
13秒前
科研通AI6应助李某某采纳,获得10
13秒前
汉堡包应助简单幸福采纳,获得10
15秒前
hbhbj发布了新的文献求助10
15秒前
赵坤煊发布了新的文献求助20
16秒前
17秒前
binky完成签到,获得积分10
17秒前
科研小弟完成签到,获得积分10
17秒前
Chief完成签到,获得积分0
17秒前
17秒前
黄上权完成签到 ,获得积分10
17秒前
小唐发布了新的文献求助10
18秒前
兴奋雁蓉发布了新的文献求助10
18秒前
19秒前
完美世界应助banksy采纳,获得10
19秒前
20秒前
20秒前
科研通AI6应助圆锥香蕉采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406795
求助须知:如何正确求助?哪些是违规求助? 4524516
关于积分的说明 14098938
捐赠科研通 4438379
什么是DOI,文献DOI怎么找? 2436217
邀请新用户注册赠送积分活动 1428245
关于科研通互助平台的介绍 1406340