清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Fault detection in wind turbine generators using a meta-learning-based convolutional neural network

涡轮机 计算机科学 故障检测与隔离 人工智能 风力发电 断层(地质) 卷积神经网络 人工神经网络 机器学习 模式识别(心理学) 工程类 地质学 电气工程 航空航天工程 执行机构 地震学
作者
Likui Qiao,Yuxian Zhang,Qisen Wang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:200: 110528-110528 被引量:25
标识
DOI:10.1016/j.ymssp.2023.110528
摘要

Conventional fault detection methods for wind turbine (WT) generators often grapple with inadequate warning times and poor portability. These issues contribute to heightened safety risks and an increased false positive rate (FPR) and false negative rate (FNR). This study introduces a fault detection method for WT generators utilizing a 1D convolutional neural network (1DCNN) based on meta-learning principles. We incorporate the ”learning to learn” concept of model-agnostic meta-learning (MAML) into a 1DCNN, enabling effective fault detection. More specifically, the training data are transformed into numerous tasks through random sampling, and the model is trained task by task. The 1DCNN is utilized as the base learner, leveraging its superior feature extraction capability to discern task features. The first-order gradient of MAML is applied to ascertain the specific initialization parameters for each task, while the second-order gradient of MAML is used to understand the similarities and differences between all tasks’ initialization parameters. This approach equips the 1DCNN-MAML with the ability to adapt to new tasks and converge rapidly, thereby achieving swift regression prediction. We also employ the probability distribution fitting method to analyze the distribution of prediction residuals, thus setting the detection threshold. Based on this threshold, warnings can be issued for faults in WT generators. We used supervisory control and data acquisition (SCADA) data from the Liaoning wind farm in China to validate the robustness and portability of the proposed model. Experimental outcomes indicate that, compared with Reptile, FOMAML, LSTM-MAML, 1DCNN, and LSTM, our proposed method can detect faults earliest across different wind turbines and has the lowest FPR and FNR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
52秒前
荔枝发布了新的文献求助10
56秒前
丁老三完成签到 ,获得积分10
1分钟前
1分钟前
Jim发布了新的文献求助10
2分钟前
2分钟前
2分钟前
两个榴莲完成签到,获得积分0
2分钟前
2分钟前
Unlisted发布了新的文献求助10
2分钟前
落寞的又菡完成签到,获得积分10
2分钟前
3分钟前
端庄洪纲完成签到 ,获得积分10
3分钟前
4分钟前
米修发布了新的文献求助10
4分钟前
4分钟前
米修完成签到,获得积分20
4分钟前
CodeCraft应助居家小可采纳,获得10
4分钟前
4分钟前
苗苗发布了新的文献求助10
5分钟前
5分钟前
苗苗完成签到 ,获得积分10
5分钟前
loathebm发布了新的文献求助10
5分钟前
NexusExplorer应助loathebm采纳,获得10
5分钟前
灿烂而孤独的八戒完成签到 ,获得积分10
6分钟前
6分钟前
居家小可发布了新的文献求助10
6分钟前
我睡觉的时候不困完成签到 ,获得积分10
6分钟前
居家小可完成签到,获得积分10
6分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
6分钟前
如歌完成签到,获得积分10
6分钟前
不羁之魂完成签到,获得积分10
7分钟前
7分钟前
8分钟前
飞快的孱发布了新的文献求助10
8分钟前
CYT完成签到,获得积分10
8分钟前
chenlc971125完成签到 ,获得积分10
9分钟前
科研通AI5应助义气的含烟采纳,获得10
9分钟前
10分钟前
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582521
求助须知:如何正确求助?哪些是违规求助? 4000238
关于积分的说明 12382295
捐赠科研通 3675277
什么是DOI,文献DOI怎么找? 2025775
邀请新用户注册赠送积分活动 1059428
科研通“疑难数据库(出版商)”最低求助积分说明 946108