Fault detection in wind turbine generators using a meta-learning-based convolutional neural network

初始化 计算机科学 故障检测与隔离 软件可移植性 稳健性(进化) 人工智能 卷积神经网络 人工神经网络 深度学习 特征提取 机器学习 随机森林 任务(项目管理) 工程类 执行机构 生物化学 化学 系统工程 基因 程序设计语言
作者
Likui Qiao,Yuxian Zhang,Qisen Wang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:200: 110528-110528 被引量:2
标识
DOI:10.1016/j.ymssp.2023.110528
摘要

Conventional fault detection methods for wind turbine (WT) generators often grapple with inadequate warning times and poor portability. These issues contribute to heightened safety risks and an increased false positive rate (FPR) and false negative rate (FNR). This study introduces a fault detection method for WT generators utilizing a 1D convolutional neural network (1DCNN) based on meta-learning principles. We incorporate the ”learning to learn” concept of model-agnostic meta-learning (MAML) into a 1DCNN, enabling effective fault detection. More specifically, the training data are transformed into numerous tasks through random sampling, and the model is trained task by task. The 1DCNN is utilized as the base learner, leveraging its superior feature extraction capability to discern task features. The first-order gradient of MAML is applied to ascertain the specific initialization parameters for each task, while the second-order gradient of MAML is used to understand the similarities and differences between all tasks’ initialization parameters. This approach equips the 1DCNN-MAML with the ability to adapt to new tasks and converge rapidly, thereby achieving swift regression prediction. We also employ the probability distribution fitting method to analyze the distribution of prediction residuals, thus setting the detection threshold. Based on this threshold, warnings can be issued for faults in WT generators. We used supervisory control and data acquisition (SCADA) data from the Liaoning wind farm in China to validate the robustness and portability of the proposed model. Experimental outcomes indicate that, compared with Reptile, FOMAML, LSTM-MAML, 1DCNN, and LSTM, our proposed method can detect faults earliest across different wind turbines and has the lowest FPR and FNR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
freedom发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
2秒前
吃饭加汤发布了新的文献求助20
4秒前
素人渔夫完成签到,获得积分10
4秒前
梦旋完成签到 ,获得积分10
4秒前
LQ完成签到,获得积分10
6秒前
6秒前
7秒前
ohh发布了新的文献求助10
7秒前
bkagyin应助人间无糖冰美式采纳,获得10
8秒前
肖远完成签到,获得积分20
8秒前
guyu发布了新的文献求助30
8秒前
freedom完成签到,获得积分10
8秒前
吕文晴完成签到 ,获得积分10
11秒前
11秒前
缥缈冰珍完成签到 ,获得积分10
11秒前
zy发布了新的文献求助10
12秒前
anlikek发布了新的文献求助10
12秒前
12秒前
善学以致用应助枝枝采纳,获得20
13秒前
Jasper应助sunyue采纳,获得10
13秒前
carm小蛋黄发布了新的文献求助10
13秒前
热情冰凡发布了新的文献求助20
13秒前
ohh关闭了ohh文献求助
15秒前
zou完成签到,获得积分20
15秒前
16秒前
yuyuyuhhh发布了新的文献求助10
16秒前
16秒前
L_1发布了新的文献求助10
16秒前
邹邹完成签到,获得积分10
17秒前
李健的粉丝团团长应助ZYY采纳,获得10
17秒前
青青青青完成签到,获得积分20
17秒前
17秒前
lucky完成签到 ,获得积分10
18秒前
丘比特应助熊猫盖浇饭采纳,获得10
18秒前
zy完成签到,获得积分10
18秒前
活力的香菇完成签到,获得积分10
18秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160242
求助须知:如何正确求助?哪些是违规求助? 2811282
关于积分的说明 7891712
捐赠科研通 2470390
什么是DOI,文献DOI怎么找? 1315472
科研通“疑难数据库(出版商)”最低求助积分说明 630850
版权声明 602038