已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting lifespan-extending chemical compounds for C. elegans with machine learning and biologically interpretable features

人工智能 机器学习 特征选择 随机森林 计算机科学 特征(语言学) 老化 秀丽隐杆线虫 计算生物学 基因本体论 有机体 模式生物 机制(生物学) 生物学数据 药物发现 表型 生物 生物信息学 基因 基因表达 生物化学 遗传学 哲学 语言学 认识论
作者
Caio Ribeiro,Chris Farmer,João Pedro de Magalhães,Alex A. Freitas
出处
期刊:Aging [Impact Journals, LLC]
卷期号:15 (13): 6073-6099 被引量:6
标识
DOI:10.18632/aging.204866
摘要

Recently, there has been a growing interest in the development of pharmacological interventions targeting ageing, as well as in the use of machine learning for analysing ageing-related data. In this work, we use machine learning methods to analyse data from DrugAge, a database of chemical compounds (including drugs) modulating lifespan in model organisms. To this end, we created four types of datasets for predicting whether or not a compound extends the lifespan of C. elegans (the most frequent model organism in DrugAge), using four different types of predictive biological features, based on: compound-protein interactions, interactions between compounds and proteins encoded by ageing-related genes, and two types of terms annotated for proteins targeted by the compounds, namely Gene Ontology (GO) terms and physiology terms from the WormBase’s Phenotype Ontology. To analyse these datasets, we used a combination of feature selection methods in a data pre-processing phase and the well-established random forest algorithm for learning predictive models from the selected features. In addition, we interpreted the most important features in the two best models in light of the biology of ageing. One noteworthy feature was the GO term “Glutathione metabolic process”, which plays an important role in cellular redox homeostasis and detoxification. We also predicted the most promising novel compounds for extending lifespan from a list of previously unlabelled compounds. These include nitroprusside, which is used as an antihypertensive medication. Overall, our work opens avenues for future work in employing machine learning to predict novel life-extending compounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助linqin采纳,获得10
1秒前
NexusExplorer应助wozai采纳,获得10
1秒前
所所应助单纯坤采纳,获得30
4秒前
123468789521发布了新的文献求助10
6秒前
充电宝应助Willing采纳,获得10
7秒前
南岸完成签到,获得积分10
8秒前
ZJL完成签到,获得积分20
9秒前
齐静春完成签到,获得积分10
9秒前
科研小白完成签到,获得积分10
9秒前
ZZZZK完成签到,获得积分10
11秒前
整齐的凡阳完成签到,获得积分20
11秒前
12秒前
Zoeee发布了新的文献求助10
16秒前
20秒前
21秒前
完美世界应助大狒狒采纳,获得10
22秒前
铃溪完成签到,获得积分10
22秒前
大个应助鸡毛采纳,获得10
23秒前
123468789521完成签到,获得积分10
24秒前
24秒前
zoe发布了新的文献求助10
25秒前
26秒前
26秒前
janejane发布了新的文献求助10
27秒前
三叔发布了新的文献求助10
27秒前
Jasper应助积极雁采纳,获得10
28秒前
雨木木完成签到,获得积分10
28秒前
29秒前
30秒前
大白菜心发布了新的文献求助10
30秒前
polofly发布了新的文献求助10
30秒前
xiaohongmao完成签到,获得积分10
31秒前
32秒前
五十不同发布了新的文献求助10
32秒前
33秒前
34秒前
鸡毛发布了新的文献求助10
34秒前
linqin发布了新的文献求助10
34秒前
Ceng完成签到 ,获得积分10
34秒前
35秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471262
求助须知:如何正确求助?哪些是违规求助? 3064158
关于积分的说明 9087696
捐赠科研通 2754957
什么是DOI,文献DOI怎么找? 1511673
邀请新用户注册赠送积分活动 698560
科研通“疑难数据库(出版商)”最低求助积分说明 698423