An Adaptive Memristor-Programming Neurodynamic Approach to Nonsmooth Nonconvex Optimization Problems

记忆电阻器 数学优化 计算机科学 人工智能 数学 工程类 电子工程
作者
Mengxin Wang,Yunshu Xie,Sitian Qin
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (11): 6874-6885 被引量:21
标识
DOI:10.1109/tsmc.2023.3287237
摘要

This article introduces an adaptive memristor-programming neurodynamic approach (AMPNA) to tackle optimization problems that are nonconvex and nonsmooth with inequality and equality constraints. In the circumstance that requiring neither estimating penalty parameters, nor the coerciveness of inequality constraints, the state of the AMPNA can go into the feasible region from any initial points within a finite amount of time and ultimately converge to the critical point set of the aforementioned optimization problem. Differ from the existing neurodynamic approach (NA), AMPNA has superiority in using memristor. On the one hand, with regard to power consumption, AMPNA makes the most of memristor's unconventional characteristics to execute within the flux-charge realm. Compared with conventional NA executing within the voltage-current realm, AMPNA executes within the flux-charge realm and consumes power only in the analog transient. Once the analog transient is complete, all voltages, currents and powers in the AMPNA disappear. On the other hand, in terms of result storage, since the memristor has the ability to calculate and save information at the same physical location, the AMPNA no longer needs additional memories, and can implement the calculation scheme by the principle of in-memory computation. Therefore, the AMPNA presented in this article has significant advantages in reducing power consumption and storage space. Finally, AMPNA's optimization capacity and exceptional performance are confirmed through numerical simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
古木完成签到,获得积分10
刚刚
YY发布了新的文献求助10
1秒前
1秒前
1秒前
kk发布了新的文献求助10
1秒前
aylwtt完成签到,获得积分10
1秒前
大力翠阳完成签到,获得积分10
3秒前
adi完成签到,获得积分10
3秒前
dangniuma发布了新的文献求助10
4秒前
谷槐完成签到,获得积分10
4秒前
烟花应助无辜小小采纳,获得10
4秒前
xiaoshaoxia完成签到,获得积分10
4秒前
orixero应助yunyunya采纳,获得10
5秒前
dddjs完成签到,获得积分10
5秒前
今天只做一件事应助Wind采纳,获得10
6秒前
7秒前
7秒前
Akim应助景行行止采纳,获得10
7秒前
Tourist应助lucky采纳,获得10
8秒前
8秒前
SciGPT应助烟雨夕阳采纳,获得10
8秒前
酷波er应助1111111采纳,获得10
9秒前
欢喜的元霜完成签到,获得积分10
9秒前
简单小土豆完成签到,获得积分10
9秒前
11秒前
无私土豆发布了新的文献求助10
11秒前
无辜的蜗牛完成签到 ,获得积分10
11秒前
12秒前
12秒前
田様应助守得云开见月明采纳,获得10
13秒前
Hermione完成签到,获得积分10
13秒前
Echan发布了新的文献求助10
13秒前
小马甲应助11采纳,获得10
13秒前
边宇发布了新的文献求助10
13秒前
李大大完成签到,获得积分20
14秒前
Zhusy发布了新的文献求助10
15秒前
充电宝应助牂牂采纳,获得10
15秒前
浮游应助浪子采纳,获得10
16秒前
共享精神应助乐融融1采纳,获得10
16秒前
学术小白发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286206
求助须知:如何正确求助?哪些是违规求助? 4439117
关于积分的说明 13820017
捐赠科研通 4320822
什么是DOI,文献DOI怎么找? 2371606
邀请新用户注册赠送积分活动 1367203
关于科研通互助平台的介绍 1330636