Role of Anharmonicity in Dictating the Thermal Boundary Conductance across Interfaces Comprised of Two-Dimensional Materials

非谐性 材料科学 异质结 石墨烯 凝聚态物理 热导率 电导 无定形固体 非晶硅 声子 基质(水族馆) 晶体硅 纳米技术 物理 光电子学 结晶学 化学 复合材料 地质学 海洋学
作者
Sandip Thakur,Ashutosh Giri
出处
期刊:Physical review applied [American Physical Society]
卷期号:20 (1) 被引量:3
标识
DOI:10.1103/physrevapplied.20.014039
摘要

Understanding the fundamental heat-transport mechanisms across interfaces comprised of two-dimensional (2D) materials is crucial for the further development of the next generation of optoelectronic devices based on 2D heterostructures for which one of the main factors affecting the device performance is their poor thermal management. Here we use systematic atomistic simulations to unravel the influence of anharmonicity in dictating the thermal boundary conductance across graphene and ${\mathrm{Mo}\mathrm{S}}_{2}$-based 2D and three-dimensional (3D) interfaces. Specifically, we conduct nonequilibrium molecular dynamics simulations on computational domains with graphene or ${\mathrm{Mo}\mathrm{S}}_{2}$ layers encapsulated between crystalline or amorphous silicon leads across a wide temperature range (of 50--600 K). We show that while the interfacial conductance across a graphene and crystalline silicon interface demonstrates considerable temperature dependence, the conductance across a graphene and amorphous silicon interface has no significant temperature dependence. In contrast, the thermal boundary conductance for the ${\mathrm{Mo}\mathrm{S}}_{2}$-based heterostructures with both the crystalline and amorphous leads demonstrate no significant temperature dependence. Our spectral energy-density calculations along with our spectrally resolved heat-flux accumulation calculations on the various interfaces show that anharmonic coupling across the entire vibrational spectrum as well as the strong hybridization of a broader spectrum of the flexural modes with substrate Rayleigh waves in graphene heterostructures give rise to the relatively higher and drastically different heat-transport mechanisms across these interfaces as compared to the ${\mathrm{Mo}\mathrm{S}}_{2}$-based heterostructures. Through these understandings, we show that one strategy to enhance heat conductance across 2D-3D interfaces is to increase the anharmonic coupling between the acoustic and optic modes in the 2D materials by inducing a stronger interaction strength with the substrates. Our findings elucidate the fundamental heat-transfer mechanisms dictating thermal-boundary conductances across 2D-3D interfaces and will be crucial for heat dissipation in the next generation of optoelectronic devices where the utilization of 2D materials are becoming ubiquitous.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优雅的鲂完成签到,获得积分10
1秒前
天天快乐应助木可采纳,获得10
1秒前
1秒前
pywangsmmu92完成签到,获得积分10
1秒前
金鱼驳回了Akim应助
2秒前
2秒前
bckl888发布了新的文献求助10
4秒前
ing关闭了ing文献求助
4秒前
沉默高跟鞋完成签到,获得积分10
5秒前
桐月十六完成签到 ,获得积分10
5秒前
9秒前
9秒前
CharlesL完成签到,获得积分10
11秒前
SciGPT应助lzx采纳,获得10
11秒前
安雯完成签到 ,获得积分10
11秒前
12秒前
12秒前
文静湘完成签到,获得积分10
15秒前
科研通AI2S应助兴奋千兰采纳,获得10
15秒前
16秒前
孙燕应助wang采纳,获得20
16秒前
Katherine完成签到,获得积分10
16秒前
雪白的听寒完成签到 ,获得积分10
17秒前
变式拓展发布了新的文献求助10
18秒前
木可发布了新的文献求助10
18秒前
大个应助帅男采纳,获得10
18秒前
怡然乌完成签到,获得积分10
18秒前
酷炫的幻丝完成签到 ,获得积分10
20秒前
HDM完成签到 ,获得积分10
22秒前
22秒前
luchong发布了新的文献求助10
22秒前
英俊白莲发布了新的文献求助80
29秒前
pp.gsyx完成签到,获得积分10
29秒前
luchong完成签到,获得积分10
29秒前
不是省油的灯完成签到 ,获得积分10
30秒前
sunglow11完成签到,获得积分0
30秒前
愤怒的念烟完成签到,获得积分20
31秒前
dong应助lm采纳,获得10
31秒前
菜芽君完成签到,获得积分10
31秒前
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989589
求助须知:如何正确求助?哪些是违规求助? 3531795
关于积分的说明 11254881
捐赠科研通 3270329
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176