Role of Anharmonicity in Dictating the Thermal Boundary Conductance across Interfaces Comprised of Two-Dimensional Materials

非谐性 材料科学 异质结 石墨烯 凝聚态物理 热导率 电导 无定形固体 非晶硅 声子 基质(水族馆) 晶体硅 纳米技术 物理 光电子学 结晶学 化学 复合材料 地质学 海洋学
作者
Sandip Thakur,Ashutosh Giri
出处
期刊:Physical review applied [American Physical Society]
卷期号:20 (1) 被引量:3
标识
DOI:10.1103/physrevapplied.20.014039
摘要

Understanding the fundamental heat-transport mechanisms across interfaces comprised of two-dimensional (2D) materials is crucial for the further development of the next generation of optoelectronic devices based on 2D heterostructures for which one of the main factors affecting the device performance is their poor thermal management. Here we use systematic atomistic simulations to unravel the influence of anharmonicity in dictating the thermal boundary conductance across graphene and ${\mathrm{Mo}\mathrm{S}}_{2}$-based 2D and three-dimensional (3D) interfaces. Specifically, we conduct nonequilibrium molecular dynamics simulations on computational domains with graphene or ${\mathrm{Mo}\mathrm{S}}_{2}$ layers encapsulated between crystalline or amorphous silicon leads across a wide temperature range (of 50--600 K). We show that while the interfacial conductance across a graphene and crystalline silicon interface demonstrates considerable temperature dependence, the conductance across a graphene and amorphous silicon interface has no significant temperature dependence. In contrast, the thermal boundary conductance for the ${\mathrm{Mo}\mathrm{S}}_{2}$-based heterostructures with both the crystalline and amorphous leads demonstrate no significant temperature dependence. Our spectral energy-density calculations along with our spectrally resolved heat-flux accumulation calculations on the various interfaces show that anharmonic coupling across the entire vibrational spectrum as well as the strong hybridization of a broader spectrum of the flexural modes with substrate Rayleigh waves in graphene heterostructures give rise to the relatively higher and drastically different heat-transport mechanisms across these interfaces as compared to the ${\mathrm{Mo}\mathrm{S}}_{2}$-based heterostructures. Through these understandings, we show that one strategy to enhance heat conductance across 2D-3D interfaces is to increase the anharmonic coupling between the acoustic and optic modes in the 2D materials by inducing a stronger interaction strength with the substrates. Our findings elucidate the fundamental heat-transfer mechanisms dictating thermal-boundary conductances across 2D-3D interfaces and will be crucial for heat dissipation in the next generation of optoelectronic devices where the utilization of 2D materials are becoming ubiquitous.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zheng完成签到 ,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
星辰大海应助荔枝采纳,获得10
1秒前
LJL发布了新的文献求助10
2秒前
meng发布了新的文献求助10
2秒前
无私的颤完成签到,获得积分10
2秒前
lucky完成签到 ,获得积分10
3秒前
Zel博博完成签到,获得积分10
3秒前
谷粱诗云完成签到,获得积分10
3秒前
yar应助myuniv采纳,获得10
3秒前
xc完成签到 ,获得积分10
4秒前
4秒前
干净的天与完成签到,获得积分10
4秒前
哈基米德应助毅诚菌采纳,获得10
6秒前
铁甲小杨完成签到,获得积分0
6秒前
7秒前
卡机了完成签到,获得积分10
8秒前
平淡绿柏完成签到,获得积分10
10秒前
架子猫发布了新的文献求助10
10秒前
10秒前
颠覆乾坤发布了新的文献求助10
11秒前
乔乔完成签到,获得积分10
12秒前
学术小白完成签到,获得积分10
12秒前
min完成签到,获得积分10
12秒前
12秒前
汉堡包应助slin_sjtu采纳,获得10
12秒前
czx完成签到,获得积分10
13秒前
szxnb666发布了新的文献求助30
13秒前
MRJJJJ完成签到,获得积分10
13秒前
chaser完成签到,获得积分10
13秒前
光亮白山完成签到 ,获得积分10
14秒前
科研通AI2S应助大橙子采纳,获得10
14秒前
14秒前
小马甲应助meng采纳,获得10
15秒前
pz发布了新的文献求助10
15秒前
zhou1216完成签到 ,获得积分10
16秒前
小格子完成签到,获得积分10
17秒前
zgt01发布了新的文献求助10
17秒前
锥子完成签到,获得积分10
17秒前
Yjh完成签到,获得积分10
17秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022