A hybrid ensemble machine learning model for detecting APT attacks based on network behavior anomaly detection

随机森林 计算机科学 机器学习 人工智能 决策树 卷积神经网络 集成学习 多层感知器 分类 异常检测 深度学习 人工神经网络
作者
Neeraj Saini,Vivekananda Bhat Kasaragod,Krishna Prakash,Ashok Kumar Das
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:35 (28) 被引量:12
标识
DOI:10.1002/cpe.7865
摘要

Summary A persistent, targeted cyber attack is called an advanced persistent threat (APT) attack. The attack is mainly launched to gain sensitive information, take over the system, and for financial gain, which creates nowadays more hurdles and challenges for the organization in preventing, detecting, and recovering from such attacks. Due to the nature of APT attacks, it is difficult to detect them quickly. Therefore machine learning techniques come into these research areas. This study uses deep and machine learning models such as random forest, decision tree, convolutional neural network, multilayer perceptron and so forth to categorize and effectively detect APT attacks by utilizing publicly accessible datasets. The datasets used in this study are CSE‐CIC‐IDS2018, CIC‐IDS2017, NSL‐KDD, and UNSW‐NB15. This study proposes the hybrid ensemble machine learning model, a mixed approach of random forest and XGBoost classifiers. It has obtained the maximum prediction accuracy of 98.92%, 99.91%, 99.24%, and 97.11% for datasets CSE‐CIC‐IDS2018, CIC‐IDS2017, NSL‐KDD, and UNSW‐NB15, with a false positive rate of 0.52%, 0.12%, 0.62%, and 5.29% respectively. These results are compared to other closely related recent studies in the literature. Our experiment's findings show that our model has performed significantly better for all datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助嗨记得看采纳,获得10
1秒前
AAA111122发布了新的文献求助10
2秒前
3秒前
Alan完成签到 ,获得积分10
4秒前
肖肖恩发布了新的文献求助10
6秒前
医路潜行发布了新的文献求助10
6秒前
CipherSage应助亚李采纳,获得10
6秒前
9秒前
10秒前
xingl完成签到,获得积分10
10秒前
兮尔发布了新的文献求助10
13秒前
小草三心发布了新的文献求助10
13秒前
15秒前
SciGPT应助guochang采纳,获得10
16秒前
16秒前
18秒前
19秒前
19秒前
19秒前
大大方方发布了新的文献求助10
20秒前
21秒前
24秒前
24秒前
24秒前
上官老黑完成签到 ,获得积分10
25秒前
guozizi应助科研通管家采纳,获得200
25秒前
852应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
Owen应助科研通管家采纳,获得10
25秒前
25秒前
Hello应助科研通管家采纳,获得10
25秒前
小二郎应助科研通管家采纳,获得10
25秒前
26秒前
26秒前
26秒前
26秒前
26秒前
26秒前
AAA111122完成签到,获得积分10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952555
求助须知:如何正确求助?哪些是违规求助? 3498015
关于积分的说明 11089696
捐赠科研通 3228463
什么是DOI,文献DOI怎么找? 1784978
邀请新用户注册赠送积分活动 869059
科研通“疑难数据库(出版商)”最低求助积分说明 801309