A hybrid ensemble machine learning model for detecting APT attacks based on network behavior anomaly detection

随机森林 计算机科学 机器学习 人工智能 决策树 卷积神经网络 集成学习 多层感知器 分类 异常检测 深度学习 人工神经网络
作者
Neeraj Saini,Vivekananda Bhat Kasaragod,Krishna Prakash,Ashok Kumar Das
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:35 (28) 被引量:12
标识
DOI:10.1002/cpe.7865
摘要

Summary A persistent, targeted cyber attack is called an advanced persistent threat (APT) attack. The attack is mainly launched to gain sensitive information, take over the system, and for financial gain, which creates nowadays more hurdles and challenges for the organization in preventing, detecting, and recovering from such attacks. Due to the nature of APT attacks, it is difficult to detect them quickly. Therefore machine learning techniques come into these research areas. This study uses deep and machine learning models such as random forest, decision tree, convolutional neural network, multilayer perceptron and so forth to categorize and effectively detect APT attacks by utilizing publicly accessible datasets. The datasets used in this study are CSE‐CIC‐IDS2018, CIC‐IDS2017, NSL‐KDD, and UNSW‐NB15. This study proposes the hybrid ensemble machine learning model, a mixed approach of random forest and XGBoost classifiers. It has obtained the maximum prediction accuracy of 98.92%, 99.91%, 99.24%, and 97.11% for datasets CSE‐CIC‐IDS2018, CIC‐IDS2017, NSL‐KDD, and UNSW‐NB15, with a false positive rate of 0.52%, 0.12%, 0.62%, and 5.29% respectively. These results are compared to other closely related recent studies in the literature. Our experiment's findings show that our model has performed significantly better for all datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
宁羽发布了新的文献求助10
1秒前
大块发布了新的文献求助10
2秒前
王之争霸完成签到,获得积分10
2秒前
2秒前
领导范儿应助高手采纳,获得10
3秒前
积极幻雪完成签到 ,获得积分10
4秒前
万能图书馆应助han采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
5秒前
笨笨米卡应助龙弟弟采纳,获得10
6秒前
明芬发布了新的文献求助10
6秒前
Jasper应助人123456采纳,获得10
6秒前
6秒前
烟花应助哇晒采纳,获得10
6秒前
6秒前
打打应助阳光的道消采纳,获得10
7秒前
8秒前
fanfan完成签到,获得积分10
9秒前
波妞发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
11秒前
fjnm发布了新的文献求助10
11秒前
浮浮世世发布了新的文献求助10
12秒前
12秒前
Wei完成签到,获得积分10
14秒前
14秒前
15秒前
liamddd完成签到 ,获得积分10
17秒前
半农完成签到,获得积分0
17秒前
Sun完成签到,获得积分20
18秒前
18秒前
啊啾发布了新的文献求助60
18秒前
19秒前
Wwww发布了新的文献求助10
19秒前
shadow完成签到,获得积分10
19秒前
19秒前
无语的宛白完成签到 ,获得积分10
20秒前
笑点低的衬衫完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675369
求助须知:如何正确求助?哪些是违规求助? 4945575
关于积分的说明 15152710
捐赠科研通 4834585
什么是DOI,文献DOI怎么找? 2589541
邀请新用户注册赠送积分活动 1543247
关于科研通互助平台的介绍 1501131