A hybrid ensemble machine learning model for detecting APT attacks based on network behavior anomaly detection

随机森林 计算机科学 机器学习 人工智能 决策树 卷积神经网络 集成学习 多层感知器 分类 异常检测 深度学习 人工神经网络
作者
Neeraj Saini,Vivekananda Bhat Kasaragod,Krishna Prakash,Ashok Kumar Das
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:35 (28) 被引量:12
标识
DOI:10.1002/cpe.7865
摘要

Summary A persistent, targeted cyber attack is called an advanced persistent threat (APT) attack. The attack is mainly launched to gain sensitive information, take over the system, and for financial gain, which creates nowadays more hurdles and challenges for the organization in preventing, detecting, and recovering from such attacks. Due to the nature of APT attacks, it is difficult to detect them quickly. Therefore machine learning techniques come into these research areas. This study uses deep and machine learning models such as random forest, decision tree, convolutional neural network, multilayer perceptron and so forth to categorize and effectively detect APT attacks by utilizing publicly accessible datasets. The datasets used in this study are CSE‐CIC‐IDS2018, CIC‐IDS2017, NSL‐KDD, and UNSW‐NB15. This study proposes the hybrid ensemble machine learning model, a mixed approach of random forest and XGBoost classifiers. It has obtained the maximum prediction accuracy of 98.92%, 99.91%, 99.24%, and 97.11% for datasets CSE‐CIC‐IDS2018, CIC‐IDS2017, NSL‐KDD, and UNSW‐NB15, with a false positive rate of 0.52%, 0.12%, 0.62%, and 5.29% respectively. These results are compared to other closely related recent studies in the literature. Our experiment's findings show that our model has performed significantly better for all datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
道友且慢完成签到,获得积分10
刚刚
林夕完成签到,获得积分10
1秒前
2秒前
京京发布了新的文献求助10
2秒前
洁净艳一完成签到,获得积分10
3秒前
林一存发布了新的文献求助10
6秒前
9秒前
江桥完成签到,获得积分10
11秒前
12秒前
小蘑菇应助机智觅儿采纳,获得10
14秒前
14秒前
田様应助聪慧的玉米采纳,获得30
14秒前
15秒前
科研通AI2S应助谭文采纳,获得10
17秒前
17秒前
ZJH发布了新的文献求助10
17秒前
18秒前
迅速海亦发布了新的文献求助10
18秒前
19秒前
tomboy发布了新的文献求助10
20秒前
20秒前
汉堡包应助Rita采纳,获得10
21秒前
21秒前
13完成签到,获得积分10
22秒前
22秒前
白小白发布了新的文献求助10
22秒前
23秒前
23秒前
小旺旺完成签到,获得积分10
23秒前
24秒前
朱小小完成签到,获得积分10
25秒前
xiao发布了新的文献求助20
25秒前
小乌龟发布了新的文献求助10
26秒前
FashionBoy应助南部之星琪采纳,获得10
26秒前
大模型应助我wo采纳,获得10
27秒前
27秒前
WJ驳回了情怀应助
27秒前
派大星完成签到,获得积分10
30秒前
迅速海亦完成签到,获得积分10
30秒前
interesting发布了新的文献求助10
32秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146304
求助须知:如何正确求助?哪些是违规求助? 2797763
关于积分的说明 7825201
捐赠科研通 2454079
什么是DOI,文献DOI怎么找? 1306010
科研通“疑难数据库(出版商)”最低求助积分说明 627638
版权声明 601503