A hybrid ensemble machine learning model for detecting APT attacks based on network behavior anomaly detection

随机森林 计算机科学 机器学习 人工智能 决策树 卷积神经网络 集成学习 多层感知器 分类 异常检测 深度学习 人工神经网络
作者
Neeraj Saini,Vivekananda Bhat Kasaragod,Krishna Prakash,Ashok Kumar Das
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:35 (28) 被引量:12
标识
DOI:10.1002/cpe.7865
摘要

Summary A persistent, targeted cyber attack is called an advanced persistent threat (APT) attack. The attack is mainly launched to gain sensitive information, take over the system, and for financial gain, which creates nowadays more hurdles and challenges for the organization in preventing, detecting, and recovering from such attacks. Due to the nature of APT attacks, it is difficult to detect them quickly. Therefore machine learning techniques come into these research areas. This study uses deep and machine learning models such as random forest, decision tree, convolutional neural network, multilayer perceptron and so forth to categorize and effectively detect APT attacks by utilizing publicly accessible datasets. The datasets used in this study are CSE‐CIC‐IDS2018, CIC‐IDS2017, NSL‐KDD, and UNSW‐NB15. This study proposes the hybrid ensemble machine learning model, a mixed approach of random forest and XGBoost classifiers. It has obtained the maximum prediction accuracy of 98.92%, 99.91%, 99.24%, and 97.11% for datasets CSE‐CIC‐IDS2018, CIC‐IDS2017, NSL‐KDD, and UNSW‐NB15, with a false positive rate of 0.52%, 0.12%, 0.62%, and 5.29% respectively. These results are compared to other closely related recent studies in the literature. Our experiment's findings show that our model has performed significantly better for all datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Aiz应助兴奋的水池采纳,获得10
2秒前
研友_VZG7GZ应助rudjs采纳,获得10
2秒前
3秒前
顾矜应助裴裴采纳,获得10
3秒前
5秒前
qrr发布了新的文献求助10
6秒前
6秒前
完美世界应助有缘采纳,获得10
7秒前
俊逸冬日发布了新的文献求助10
7秒前
7秒前
7秒前
华仔应助健壮凡桃采纳,获得10
7秒前
8秒前
英俊的铭应助11采纳,获得10
8秒前
8秒前
柚子完成签到,获得积分20
10秒前
量子星尘发布了新的文献求助10
10秒前
善学以致用应助YH采纳,获得10
10秒前
Lemon完成签到 ,获得积分10
11秒前
shhoing应助在河之洲采纳,获得10
11秒前
11秒前
善良善愁发布了新的文献求助10
11秒前
善学以致用应助无语采纳,获得10
11秒前
huaming发布了新的文献求助20
12秒前
12秒前
12秒前
12秒前
关关发布了新的文献求助10
12秒前
莫莫完成签到,获得积分10
13秒前
柚子发布了新的文献求助10
13秒前
nerd发布了新的文献求助10
13秒前
专注的十八完成签到,获得积分10
13秒前
洗澡记得戴浴帽完成签到,获得积分10
13秒前
科研通AI6应助装货采纳,获得10
13秒前
健壮的以莲完成签到,获得积分10
14秒前
14秒前
14秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526777
求助须知:如何正确求助?哪些是违规求助? 4616768
关于积分的说明 14555797
捐赠科研通 4555282
什么是DOI,文献DOI怎么找? 2496282
邀请新用户注册赠送积分活动 1476561
关于科研通互助平台的介绍 1448126