亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A HYBRID RECOGNITION METHOD VIA KELM WITH CPSO FOR MMG-BASED UPPER-LIMB MOVEMENTS CLASSIFICATION

模式识别(心理学) 人工智能 计算机科学 核主成分分析 支持向量机 主成分分析 线性判别分析 特征提取 核方法
作者
Gangsheng Cao,Yue Zhang,Hanyang Zhang,Tongtong Zhao,Chaoyang Xia
出处
期刊:Journal of Mechanics in Medicine and Biology [World Scientific]
标识
DOI:10.1142/s0219519423500847
摘要

Mechanomyography (MMG) is a low-frequency signal emitted during muscle contraction; it can overcome the inherently unreliable defects of electromyography (EMG) and electroencephalography (EEG). For MMG-based movement pattern recognition, this paper proposes an innovative kernel extreme learning machine (KELM) based on the chaotic particle swarm optimization (CPSO), namely CPSO–KELM. By using CPSO–KELM in MMG-based movement pattern recognition, the classification accuracy of upper-limb movement has been improved, and the results can be better applied to the control of passive rehabilitation training of the upper-limb exoskeleton, which can provide help for the upper extremity rehabilitation of stroke patients. In this paper, MMG which is used for pattern recognition research, is collected by accelerometers when the subjects performed seven types of upper-limb rehabilitation movements. After filtering and segmentation, six time-domain features are extracted for the MMG of each channel, then kernel principal component analysis (KPCA) and principal component analysis (PCA) are used to reduce the feature dimensions. By using different classifiers to build classification models, the average recognition accuracies of movement classification under different processing methods are obtained; it is found that for most classifiers, the recognition rate of MMG after KPCA dimensionality reduction is better than that of PCA, and the overall recognition rate of upper-limb movements using the CPSO–KELM classifier can reach 97.1%, which is better than support vector machine (SVM), back-propagation neural network (BPNN), linear discriminant algorithm (LDA) and other MMG common classifiers in recognition accuracy. Moreover, the experimental analysis shows that compared with genetic algorithm (GA) and particle swarm optimization (PSO), CPSO has faster convergence and smaller training error, and the final recognition accuracy proves that the performance of CPSO–KELM is better than those of GA–KELM and PSO–KELM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xintianli完成签到,获得积分10
38秒前
鼠道难发布了新的文献求助20
39秒前
今后应助wwww采纳,获得10
1分钟前
俭朴蜜蜂完成签到 ,获得积分10
1分钟前
科研通AI2S应助1206425219密采纳,获得10
2分钟前
2分钟前
阿俊完成签到 ,获得积分10
2分钟前
wwww发布了新的文献求助10
2分钟前
2分钟前
3分钟前
WebCasa完成签到,获得积分10
3分钟前
kuoping完成签到,获得积分0
3分钟前
万能图书馆应助wwww采纳,获得30
3分钟前
4分钟前
5分钟前
wwww发布了新的文献求助30
5分钟前
浮游应助科研通管家采纳,获得10
5分钟前
慕青应助科研通管家采纳,获得10
5分钟前
5分钟前
orixero应助wwww采纳,获得10
5分钟前
5分钟前
正直慕灵完成签到 ,获得积分20
5分钟前
6分钟前
科研通AI2S应助李根采纳,获得10
6分钟前
ChenWei发布了新的文献求助10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
7分钟前
wwww发布了新的文献求助10
7分钟前
小二郎应助wwww采纳,获得10
7分钟前
123321完成签到 ,获得积分10
7分钟前
所所应助从容栾采纳,获得10
8分钟前
小惠完成签到,获得积分10
8分钟前
Hvginn完成签到,获得积分10
8分钟前
彭晓雅完成签到 ,获得积分10
8分钟前
8分钟前
欢喜的毛豆完成签到,获得积分10
9分钟前
棍棍来也完成签到,获得积分10
9分钟前
9分钟前
从容栾发布了新的文献求助10
9分钟前
从容栾完成签到,获得积分20
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5324334
求助须知:如何正确求助?哪些是违规求助? 4465288
关于积分的说明 13894309
捐赠科研通 4357166
什么是DOI,文献DOI怎么找? 2393240
邀请新用户注册赠送积分活动 1386757
关于科研通互助平台的介绍 1357164