A HYBRID RECOGNITION METHOD VIA KELM WITH CPSO FOR MMG-BASED UPPER-LIMB MOVEMENTS CLASSIFICATION

模式识别(心理学) 人工智能 计算机科学 核主成分分析 支持向量机 主成分分析 线性判别分析 特征提取 核方法
作者
Gangsheng Cao,Yue Zhang,Hanyang Zhang,Tongtong Zhao,Chaoyang Xia
出处
期刊:Journal of Mechanics in Medicine and Biology
标识
DOI:10.1142/s0219519423500847
摘要

Mechanomyography (MMG) is a low-frequency signal emitted during muscle contraction; it can overcome the inherently unreliable defects of electromyography (EMG) and electroencephalography (EEG). For MMG-based movement pattern recognition, this paper proposes an innovative kernel extreme learning machine (KELM) based on the chaotic particle swarm optimization (CPSO), namely CPSO–KELM. By using CPSO–KELM in MMG-based movement pattern recognition, the classification accuracy of upper-limb movement has been improved, and the results can be better applied to the control of passive rehabilitation training of the upper-limb exoskeleton, which can provide help for the upper extremity rehabilitation of stroke patients. In this paper, MMG which is used for pattern recognition research, is collected by accelerometers when the subjects performed seven types of upper-limb rehabilitation movements. After filtering and segmentation, six time-domain features are extracted for the MMG of each channel, then kernel principal component analysis (KPCA) and principal component analysis (PCA) are used to reduce the feature dimensions. By using different classifiers to build classification models, the average recognition accuracies of movement classification under different processing methods are obtained; it is found that for most classifiers, the recognition rate of MMG after KPCA dimensionality reduction is better than that of PCA, and the overall recognition rate of upper-limb movements using the CPSO–KELM classifier can reach 97.1%, which is better than support vector machine (SVM), back-propagation neural network (BPNN), linear discriminant algorithm (LDA) and other MMG common classifiers in recognition accuracy. Moreover, the experimental analysis shows that compared with genetic algorithm (GA) and particle swarm optimization (PSO), CPSO has faster convergence and smaller training error, and the final recognition accuracy proves that the performance of CPSO–KELM is better than those of GA–KELM and PSO–KELM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助菜鸡游泳采纳,获得10
刚刚
辛木完成签到 ,获得积分10
1秒前
4秒前
犹豫新梅完成签到,获得积分10
4秒前
5秒前
飞行器的执行周期关注了科研通微信公众号
6秒前
认真的傲柏完成签到,获得积分20
9秒前
11秒前
viyo发布了新的文献求助20
11秒前
Hyh_发布了新的文献求助10
13秒前
15秒前
16秒前
17秒前
斯文败类应助痴情的冷之采纳,获得10
19秒前
shawn完成签到,获得积分10
19秒前
正直幼菱发布了新的文献求助10
20秒前
拉长的博超完成签到,获得积分10
21秒前
21秒前
丘比特应助3dyf采纳,获得10
23秒前
灰灰发布了新的文献求助10
23秒前
27秒前
28秒前
直率的钢铁侠完成签到,获得积分10
29秒前
正直幼菱完成签到,获得积分10
30秒前
小瓶纸留下了新的社区评论
31秒前
哒哒完成签到 ,获得积分10
32秒前
33秒前
洁净白容完成签到 ,获得积分20
35秒前
35秒前
孙非完成签到,获得积分10
36秒前
Lucas完成签到,获得积分10
37秒前
乐乐应助小商采纳,获得10
38秒前
PYT完成签到,获得积分10
39秒前
义气访曼发布了新的文献求助50
40秒前
scarlett完成签到,获得积分10
44秒前
eurhfe发布了新的文献求助10
44秒前
46秒前
49秒前
52秒前
霸气冰旋发布了新的文献求助10
52秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352752
求助须知:如何正确求助?哪些是违规求助? 2977749
关于积分的说明 8681356
捐赠科研通 2658744
什么是DOI,文献DOI怎么找? 1455921
科研通“疑难数据库(出版商)”最低求助积分说明 674190
邀请新用户注册赠送积分活动 664810