A HYBRID RECOGNITION METHOD VIA KELM WITH CPSO FOR MMG-BASED UPPER-LIMB MOVEMENTS CLASSIFICATION

模式识别(心理学) 人工智能 计算机科学 核主成分分析 支持向量机 主成分分析 线性判别分析 特征提取 核方法
作者
Gangsheng Cao,Yue Zhang,Hanyang Zhang,Tongtong Zhao,Chaoyang Xia
出处
期刊:Journal of Mechanics in Medicine and Biology [World Scientific]
标识
DOI:10.1142/s0219519423500847
摘要

Mechanomyography (MMG) is a low-frequency signal emitted during muscle contraction; it can overcome the inherently unreliable defects of electromyography (EMG) and electroencephalography (EEG). For MMG-based movement pattern recognition, this paper proposes an innovative kernel extreme learning machine (KELM) based on the chaotic particle swarm optimization (CPSO), namely CPSO–KELM. By using CPSO–KELM in MMG-based movement pattern recognition, the classification accuracy of upper-limb movement has been improved, and the results can be better applied to the control of passive rehabilitation training of the upper-limb exoskeleton, which can provide help for the upper extremity rehabilitation of stroke patients. In this paper, MMG which is used for pattern recognition research, is collected by accelerometers when the subjects performed seven types of upper-limb rehabilitation movements. After filtering and segmentation, six time-domain features are extracted for the MMG of each channel, then kernel principal component analysis (KPCA) and principal component analysis (PCA) are used to reduce the feature dimensions. By using different classifiers to build classification models, the average recognition accuracies of movement classification under different processing methods are obtained; it is found that for most classifiers, the recognition rate of MMG after KPCA dimensionality reduction is better than that of PCA, and the overall recognition rate of upper-limb movements using the CPSO–KELM classifier can reach 97.1%, which is better than support vector machine (SVM), back-propagation neural network (BPNN), linear discriminant algorithm (LDA) and other MMG common classifiers in recognition accuracy. Moreover, the experimental analysis shows that compared with genetic algorithm (GA) and particle swarm optimization (PSO), CPSO has faster convergence and smaller training error, and the final recognition accuracy proves that the performance of CPSO–KELM is better than those of GA–KELM and PSO–KELM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bo关闭了bo文献求助
刚刚
shelly发布了新的文献求助10
1秒前
半岛铁拳发布了新的文献求助10
2秒前
Jolinlv应助贪玩的书包采纳,获得10
3秒前
6秒前
bkagyin应助大菠萝采纳,获得10
7秒前
7秒前
JamesPei应助丫头的小时光采纳,获得10
9秒前
shelly完成签到,获得积分10
9秒前
cmy完成签到 ,获得积分10
10秒前
dong发布了新的文献求助10
11秒前
12秒前
13秒前
qq发布了新的文献求助10
13秒前
czh应助江洋大盗采纳,获得10
14秒前
郑小七完成签到,获得积分10
15秒前
大模型应助xzf1996采纳,获得10
16秒前
风雨中飘摇应助daguan采纳,获得30
16秒前
贪玩的书包完成签到,获得积分20
16秒前
奋斗的剑完成签到 ,获得积分10
17秒前
Zhang完成签到,获得积分20
17秒前
remember发布了新的文献求助10
18秒前
爱笑的眼睛完成签到,获得积分10
20秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
Orange应助222采纳,获得10
22秒前
KKKKKKK完成签到,获得积分10
22秒前
远方完成签到,获得积分10
22秒前
汉堡包应助土狗中的土狗采纳,获得10
23秒前
23秒前
a123发布了新的文献求助10
23秒前
chy完成签到,获得积分10
24秒前
26秒前
27秒前
科研通AI2S应助麻师长采纳,获得10
27秒前
Owen应助young采纳,获得10
29秒前
执着的日记本完成签到 ,获得积分10
29秒前
29秒前
q792309106发布了新的文献求助10
30秒前
31秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979628
求助须知:如何正确求助?哪些是违规求助? 3523569
关于积分的说明 11218108
捐赠科研通 3261093
什么是DOI,文献DOI怎么找? 1800402
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807163