Metabolomics and Machine Learning Identify Metabolic Differences and Potential Biomarkers for Frequent Versus Infrequent Gout Flares

代谢组学 代谢组 代谢途径 嘌呤代谢 生物 代谢物 低牛磺酸 嘌呤 牛磺酸 计算生物学 痛风 生物信息学 新陈代谢 生物化学 医学 氨基酸
作者
Ming Wang,Rui Li,Han Qi,Lei Pang,Lingling Cui,Zhen Liu,Jie Lü,Rong Wang,Shuhui Hu,Ningning Liang,Yongzhen Tao,Nicola Dalbeth,Tony R. Merriman,Robert Terkeltaub,Huiyong Yin,Changgui Li
出处
期刊:Arthritis & rheumatology [Wiley]
卷期号:75 (12): 2252-2264 被引量:6
标识
DOI:10.1002/art.42635
摘要

The objective of this study was to discover differential metabolites and pathways underlying infrequent gout flares (InGF) and frequent gout flares (FrGF) using metabolomics and to establish a predictive model by machine learning (ML) algorithms.Serum samples from a discovery cohort of 163 patients with InGF and 239 patients with FrGF were analyzed by mass spectrometry-based untargeted metabolomics to profile differential metabolites and explore dysregulated metabolic pathways using pathway enrichment analysis and network propagation-based algorithms. ML algorithms were performed to establish a predictive model based on selected metabolites, which was further optimized by a quantitative targeted metabolomics method and validated in an independent validation cohort with 97 participants with InGF and 139 participants with FrGF.A total of 439 differential metabolites between InGF and FrGF groups were identified. Top dysregulated pathways included carbohydrates, amino acids, bile acids, and nucleotide metabolism. Subnetworks with maximum disturbances in the global metabolic networks featured cross-talk between purine metabolism and caffeine metabolism, as well as interactions among pathways involving primary bile acid biosynthesis, taurine and hypotaurine metabolism, alanine, aspartate, and glutamate metabolism, suggesting epigenetic modifications and gut microbiome in metabolic alterations underlying InGF and FrGF. Potential metabolite biomarkers were identified using ML-based multivariable selection and further validated by targeted metabolomics. Area under receiver operating characteristics curve for differentiating InGF and FrGF achieved 0.88 and 0.67 for the discovery and validation cohorts, respectively.Systematic metabolic alterations underlie InGF and FrGF, and distinct profiles are associated with differences in gout flare frequencies. Predictive modeling based on selected metabolites from metabolomics can differentiate InGF and FrGF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱听歌寄云完成签到 ,获得积分10
2秒前
halona完成签到,获得积分10
3秒前
gouyanju完成签到,获得积分10
3秒前
骑猪看日落完成签到,获得积分10
4秒前
4秒前
做自己的太阳应助mmssdd采纳,获得10
4秒前
还单身的笑翠完成签到 ,获得积分10
5秒前
方便面条子完成签到 ,获得积分10
5秒前
6秒前
YangSY完成签到,获得积分10
6秒前
小妮完成签到 ,获得积分10
8秒前
共享精神应助健忘的千凡采纳,获得10
8秒前
9秒前
宋北北完成签到,获得积分10
9秒前
Annie完成签到 ,获得积分10
10秒前
111发布了新的文献求助10
11秒前
labordoc完成签到,获得积分10
12秒前
雪白的夜香完成签到,获得积分10
12秒前
whatever发布了新的文献求助200
12秒前
犹豫小海豚完成签到,获得积分10
12秒前
x1完成签到,获得积分10
12秒前
风趣的惜天完成签到 ,获得积分10
13秒前
科研小白完成签到,获得积分10
15秒前
隐形曼青应助seattle采纳,获得10
15秒前
15秒前
16秒前
赘婿应助科研毛毛从采纳,获得10
17秒前
Aceawei完成签到,获得积分10
17秒前
朴素的荠完成签到,获得积分10
18秒前
心随风飞完成签到,获得积分10
19秒前
19秒前
迟迟完成签到 ,获得积分10
20秒前
20秒前
cc完成签到,获得积分10
21秒前
冷酷的墨镜完成签到,获得积分10
21秒前
陈昇完成签到 ,获得积分10
21秒前
张文静完成签到,获得积分10
21秒前
瘦瘦的铅笔完成签到 ,获得积分10
22秒前
bjr完成签到 ,获得积分10
22秒前
光亮若翠完成签到,获得积分10
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146969
求助须知:如何正确求助?哪些是违规求助? 2798221
关于积分的说明 7827159
捐赠科研通 2454808
什么是DOI,文献DOI怎么找? 1306480
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565