Metabolomics and Machine Learning Identify Metabolic Differences and Potential Biomarkers for Frequent Versus Infrequent Gout Flares

代谢组学 代谢组 代谢途径 嘌呤代谢 生物 代谢物 低牛磺酸 嘌呤 牛磺酸 计算生物学 痛风 生物信息学 新陈代谢 生物化学 医学 氨基酸
作者
Ming Wang,Rui Li,Han Qi,Lei Pang,Lingling Cui,Zhen Liu,Jie Lü,Rong Wang,Shuhui Hu,Ningning Liang,Yongzhen Tao,Nicola Dalbeth,Tony R. Merriman,Robert Terkeltaub,Huiyong Yin,Changgui Li
出处
期刊:Arthritis & rheumatology [Wiley]
卷期号:75 (12): 2252-2264 被引量:9
标识
DOI:10.1002/art.42635
摘要

The objective of this study was to discover differential metabolites and pathways underlying infrequent gout flares (InGF) and frequent gout flares (FrGF) using metabolomics and to establish a predictive model by machine learning (ML) algorithms.Serum samples from a discovery cohort of 163 patients with InGF and 239 patients with FrGF were analyzed by mass spectrometry-based untargeted metabolomics to profile differential metabolites and explore dysregulated metabolic pathways using pathway enrichment analysis and network propagation-based algorithms. ML algorithms were performed to establish a predictive model based on selected metabolites, which was further optimized by a quantitative targeted metabolomics method and validated in an independent validation cohort with 97 participants with InGF and 139 participants with FrGF.A total of 439 differential metabolites between InGF and FrGF groups were identified. Top dysregulated pathways included carbohydrates, amino acids, bile acids, and nucleotide metabolism. Subnetworks with maximum disturbances in the global metabolic networks featured cross-talk between purine metabolism and caffeine metabolism, as well as interactions among pathways involving primary bile acid biosynthesis, taurine and hypotaurine metabolism, alanine, aspartate, and glutamate metabolism, suggesting epigenetic modifications and gut microbiome in metabolic alterations underlying InGF and FrGF. Potential metabolite biomarkers were identified using ML-based multivariable selection and further validated by targeted metabolomics. Area under receiver operating characteristics curve for differentiating InGF and FrGF achieved 0.88 and 0.67 for the discovery and validation cohorts, respectively.Systematic metabolic alterations underlie InGF and FrGF, and distinct profiles are associated with differences in gout flare frequencies. Predictive modeling based on selected metabolites from metabolomics can differentiate InGF and FrGF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
可靠的如之完成签到,获得积分10
3秒前
专注棒棒糖完成签到 ,获得积分10
3秒前
3秒前
Lily发布了新的文献求助10
3秒前
4秒前
YZQ发布了新的文献求助10
5秒前
黑咖啡完成签到,获得积分10
5秒前
Liufgui应助可靠的如之采纳,获得10
7秒前
科研通AI2S应助阿俊采纳,获得10
8秒前
9秒前
11秒前
13秒前
13秒前
JamesPei应助YZQ采纳,获得10
14秒前
Orange应助邪恶花生米采纳,获得10
14秒前
weijie发布了新的文献求助10
14秒前
hf完成签到,获得积分10
14秒前
14秒前
16秒前
量子星尘发布了新的文献求助30
17秒前
硅负极完成签到,获得积分10
17秒前
zzt发布了新的文献求助10
17秒前
18秒前
Dr.Yang发布了新的文献求助10
19秒前
21秒前
刻苦的秋柔完成签到,获得积分10
23秒前
意大利种马完成签到,获得积分20
24秒前
orixero应助写得出发的中采纳,获得10
26秒前
刘雨森完成签到 ,获得积分10
27秒前
坦率白萱应助littleblack采纳,获得10
28秒前
香蕉觅云应助意大利种马采纳,获得10
29秒前
ZS完成签到,获得积分10
29秒前
帅哥的事情少管完成签到,获得积分10
30秒前
littlestone完成签到,获得积分10
31秒前
NexusExplorer应助ShuXU采纳,获得10
33秒前
果果完成签到,获得积分10
33秒前
项绝义完成签到,获得积分10
34秒前
34秒前
空古悠浪发布了新的文献求助20
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988920
求助须知:如何正确求助?哪些是违规求助? 3531290
关于积分的说明 11253247
捐赠科研通 3269903
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882027
科研通“疑难数据库(出版商)”最低求助积分说明 809052