软骨内骨化
软骨
间充质干细胞
自愈水凝胶
生物医学工程
材料科学
组织工程
软骨发生
细胞外基质
体内
细胞生物学
再生(生物学)
透明质酸
骨愈合
血管生成
骨化
化学
解剖
生物
医学
癌症研究
生物技术
高分子化学
作者
Shintaro Yamazaki,Yichen Lin,Eriko Marukawa,Masa‐Aki Ikeda
摘要
Conventional bone regeneration therapy using mesenchymal stem cells (MSCs) is difficult to apply to bone defects larger than the critical size because it does not have a mechanism to induce angiogenesis. Implanting artificial cartilage tissue fabricated from MSCs induces angiogenesis and bone formation in vivo via endochondral ossification (ECO). Therefore, this ECO-mediated approach may be a promising bone regeneration therapy in the future. An important aspect of the clinical application of this ECO-mediated approach is establishing a protocol for preparing enough cartilage to be implanted to repair the bone defect. It is especially not practical to design a single mass of grafted cartilage of a size that conforms to the shape of the actual bone defect. Therefore, the cartilage to be transplanted must have the property of forming bone integrally when multiple pieces are implanted. Hydrogels may be an attractive tool for scaling up tissue-engineered grafts for endochondral ossification to meet clinical requirements. Although many naturally derived hydrogels support MSC cartilage formation in vitro and ECO in vivo, the optimal scaffold material to meet the needs of clinical applications has yet to be determined. Hyaluronic acid (HA) is a crucial component of the cartilage extracellular matrix and is a biodegradable and biocompatible polysaccharide. Here, we show that HA hydrogels have excellent properties to support in vitro differentiation of MSC-based cartilage tissue and promote endochondral bone formation in vivo.
科研通智能强力驱动
Strongly Powered by AbleSci AI