Distributed safe formation maneuver control of Euler–Lagrange multi-agent systems in a partially unknown environment by safe reinforcement learning

计算机科学 强化学习 路径(计算) 避碰 控制(管理) 数学优化 控制理论(社会学) 碰撞 人工智能 数学 计算机安全 程序设计语言
作者
Fatemeh Mahdavi Golmisheh,Saeed Shamaghdari
出处
期刊:Robotics and Autonomous Systems [Elsevier]
卷期号:167: 104486-104486
标识
DOI:10.1016/j.robot.2023.104486
摘要

This paper describes a multi-layer approach to the problem of safe formation control. The agents’ and the leader’s dynamics are considered unknown Euler–Lagrange (E-L) systems. In addition, the environment is partially unknown. We propose a novel layered approach to reach the predefined target while preserving a designed, safe, optimal formation pattern along a planned optimal path. By satisfying the safety constraints, safe reinforcement learning (RL) is introduced to ensure the leader reaches the desired destination without collision. Maintaining a constant formation pattern is unsafe for followers since they are not familiar with the surroundings. Thus, we define the formation maneuver control problem, which can adjust formation geomatical patterns dynamically depending on the environment. A proposed algorithm based on the leader’s designed path is defined to solve the problem. Using off-policy RL, the model-free distributed control law is presented to generate a designed formation pattern in a determined optimal path. Finally, we demonstrate that the proposed approach can be applied to the safe formation maneuver problem in an environment with convex obstacles. This paper presents a safe formation control strategy that addresses practical issues, such as model uncertainty, without requiring sensor measurements in an unknown, static environment without uncertainty. Simulation demonstrates the effectiveness of the suggested approaches for a group of Uncrewed Surface Vehicles (USVs).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大个应助临床AI采纳,获得10
刚刚
ramsey33完成签到,获得积分10
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
所所应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
VaVa应助科研通管家采纳,获得10
1秒前
崽崽完成签到,获得积分10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
乐乐应助Zhang采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
2秒前
丘比特应助meina采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
小二郎应助美丽仙人掌采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
85搏一博应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
无情萝完成签到,获得积分10
3秒前
FashionBoy应助细致且入微采纳,获得10
3秒前
sunjr给sunjr的求助进行了留言
3秒前
3秒前
guo发布了新的文献求助10
4秒前
飞龙爵士发布了新的文献求助10
4秒前
成就的冰双完成签到,获得积分10
4秒前
4秒前
温凡之完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
6秒前
打打应助秋秋采纳,获得10
6秒前
向光完成签到,获得积分10
6秒前
勤恳冰彤发布了新的文献求助10
7秒前
7秒前
善学以致用应助1111111采纳,获得10
7秒前
无情萝发布了新的文献求助30
7秒前
8秒前
Lucas应助xxx采纳,获得30
8秒前
黑猫完成签到,获得积分10
8秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309071
求助须知:如何正确求助?哪些是违规求助? 2942413
关于积分的说明 8508810
捐赠科研通 2617447
什么是DOI,文献DOI怎么找? 1430137
科研通“疑难数据库(出版商)”最低求助积分说明 664044
邀请新用户注册赠送积分活动 649236